49 research outputs found
A self-filling microfluidic device for noninvasive and time-resolved single red blood cell experiments
Existing approaches to red blood cell (RBC) experiments on the single-cell level usually rely on chemical or physical manipulations that often cause difficulties with preserving the RBC's integrity in a controlled microenvironment. Here, we introduce a straightforward, self-filling microfluidic device that autonomously separates and isolates single RBCs directly from unprocessed human blood samples and confines them in diffusion-controlled microchambers by solely exploiting their unique intrinsic properties. We were able to study the photo-induced oxygenation cycle of single functional RBCs by Raman microscopy without the limitations typically observed in optical tweezers based methods. Using bright-field microscopy, our noninvasive approach further enabled the time-resolved analysis of RBC flickering during the reversible shape evolution from the discocyte to the echinocyte morphology. Due to its specialized geometry, our device is particularly suited for studying the temporal behavior of single RBCs under precise control of their environment that will provide important insights into the RBC's biomedical and biophysical properties
Long non-coding RNAs defining major subtypes of B cell precursor acute lymphoblastic leukemia
BACKGROUND: Long non-coding RNAs (lncRNAs) have emerged as a novel class of RNA due to its diverse mechanism in cancer development and progression. However, the role and expression pattern of lncRNAs in molecular subtypes of B cell acute lymphoblastic leukemia (BCP-ALL) have not yet been investigated. Here, we assess to what extent lncRNA expression and DNA methylation is driving the progression of relapsed BCP-ALL subtypes and we determine if the expression and DNA methylation profile of lncRNAs correlates with established BCP-ALL subtypes. METHODS: We performed RNA sequencing and DNA methylation (Illumina Infinium microarray) of 40 diagnosis and 42 relapse samples from 45 BCP-ALL patients in a German cohort and quantified lncRNA expression. Unsupervised clustering was applied to ascertain and confirm that the lncRNA-based classification of the BCP-ALL molecular subtypes is present in both our cohort and an independent validation cohort of 47 patients. A differential expression and differential methylation analysis was applied to determine the subtype-specific, relapse-specific, and differentially methylated lncRNAs. Potential functions of subtype-specific lncRNAs were determined by using co-expression-based analysis on nearby (cis) and distally (trans) located protein-coding genes. RESULTS: Using an integrative Bioinformatics analysis, we developed a comprehensive catalog of 1235 aberrantly dysregulated BCP-ALL subtype-specific and 942 relapse-specific lncRNAs and the methylation profile of three subtypes of BCP-ALL. The 1235 subtype-specific lncRNA signature represented a similar classification of the molecular subtypes of BCP-ALL in the independent validation cohort. We identified a strong correlation between the DUX4-specific lncRNAs and genes involved in the activation of TGF-β and Hippo signaling pathways. Similarly, Ph-like-specific lncRNAs were correlated with genes involved in the activation of PI3K-AKT, mTOR, and JAK-STAT signaling pathways. Interestingly, the relapse-specific lncRNAs correlated with the activation of metabolic and signaling pathways. Finally, we found 23 promoter methylated lncRNAs epigenetically facilitating their expression levels. CONCLUSION: Here, we describe a set of subtype-specific and relapse-specific lncRNAs from three major BCP-ALL subtypes and define their potential functions and epigenetic regulation. The subtype-specific lncRNAs are reproducible and can effectively stratify BCP-ALL subtypes. Our data uncover the diverse mechanism of action of lncRNAs in BCP-ALL subtypes defining which lncRNAs are involved in the pathogenesis of disease and are relevant for the stratification of BCP-ALL subtypes
Hoxa9 and Meis1 Cooperatively Induce Addiction to Syk Signaling by Suppressing miR-146a in Acute Myeloid Leukemia
The transcription factor Meis1 drives myeloid leukemogenesis in the context of Hox gene overexpression but is currently considered undruggable. We therefore investigated whether myeloid progenitor cells transformed by Hoxa9 and Meis1 become addicted to targetable signaling pathways. A comprehensive (phospho)proteomic analysis revealed that Meis1 increased Syk protein expression and activity. Syk upregulation occurs through a Meis1-dependent feedback loop. By dissecting this loop, we show that Syk is a direct target of miR-146a, whose expression is indirectly regulated by Meis1 through the transcription factor PU.1. In the context of Hoxa9 overexpression, Syk signaling induces Meis1, recapitulating several leukemogenic features of Hoxa9/Meis1-driven leukemia. Finally, Syk inhibition disrupts the identified regulatory loop, prolonging survival of mice with Hoxa9/Meis1-driven leukemia..O. and T. Berg (BE 4198/1-1 and BE 4198/2-1) are supported by the Deutsche Forschungsgemeinschaft (DFG). K.S. is supported by a Leukemia and Lymphoma Society Scholar Award and by the National Cancer Institute (R01 CA140292). F.C. is supported by an EMBO long-term fellowship (1305-2015 and Marie Curie ActionsLTFCOFUND2013/GA-2013-609409). F.K. was supported by grants from Deutsche Krebshilfe (grant 109420; Max-Eder program), fellowship 2010/04 by the European Hematology Association, and by the DFG (SFB 1074, project A5). A.R. was supported by the DFG (SFB 1074, project A5) and the gender equality program by the DFG (SFB 1074, project Z2), a fellowship from the Canadian Institutes of Health Research, and the Baustein Startförderung Program of the Medical Faculty, Ulm University. Work in the Department of Haematology in Cambridge is supported by Bloodwise (grant ref. 13003), the Wellcome Trust (grant ref. 104710/Z/14/Z), the Medical Research Council (MC_PC_12009), the Kay Kendall Leukemia Fund (KKL952), the Cambridge NIHR Biomedical Research Center (NF-BR-0412-10321), the Cambridge Experimental Cancer Medicine Centre itself receives funding from NIHR (NF-EC-0412-10442), the Leukemia and Lymphoma Society of America (grant ref. 07037), and core support grants from the Wellcome Trust (100140/Z/12/Z and 097922/Z/11/Z) and MRC (MC_PC_12009)