9,800 research outputs found

    Planet gaps in the dust layer of 3D proto-planetary disks: Observability with ALMA

    Get PDF
    Among the numerous known extrasolar planets, only a handful have been imaged directly so far, at large orbital radii and in rather evolved systems. The Atacama Large Millimeter/submillimeter Array (ALMA) will have the capacity to observe these wide planetary systems at a younger age, thus bringing a better understanding of the planet formation process. Here we explore the ability of ALMA to detect the gaps carved by planets on wide orbits.Comment: 2 pages, 2 figures, to appear in the Proceedings of IAU Symp. 299: Exploring the Formation and Evolution of Planetary Systems (Victoria, Canada

    Growth of quasiconvex subgroups

    Full text link
    We prove that non-elementary hyperbolic groups grow exponentially more quickly than their infinite index quasiconvex subgroups. The proof uses the classical tools of automatic structures and Perron-Frobenius theory. We also extend the main result to relatively hyperbolic groups and cubulated groups. These extensions use the notion of growth tightness and the work of Dahmani, Guirardel, and Osin on rotating families.Comment: 28 pages, 1 figure. v3 is the final version, to appear in Math Proc. Cambridge Philos. So

    Growing dust grains in protoplanetary discs - I. Radial drift with toy growth models

    Get PDF
    In a series of papers, we present a comprehensive analytic study of the global motion of growing dust grains in protoplanetary discs, addressing both the radial drift and the vertical settling of the particles. Here we study how the radial drift of dust particles is affected by grain growth. In a first step, toy models in which grain growth can either be constant, accelerate or decelerate are introduced. The equations of motion are analytically integrable and therefore the grains dynamics is easy to understand. The radial motion of growing grains is governed by the relative efficiency of the growth and migration processes which is expressed by the dimensionless parameter Lambda, as well as the exponents for the gas surface density and temperature profiles, denoted p and q respectively. When Lambda is of order unity, growth and migration are strongly coupled, providing the most efficient radial drift. For the toy models considered, grains pile up when -p+q+1/2<0. Importantly, we show the existence of a second process which can help discs to retain their solid materials. For accelerating growth, grains end up their migration at a finite radius, thus avoiding being accreted onto the central star.Comment: 12 pages, 9 figures. Accepted for publication in MNRAS. v2: typos correcte

    Breaking anchored droplets in a microfluidic Hele-Shaw cell

    Full text link
    We study microfluidic self digitization in Hele-Shaw cells using pancake droplets anchored to surface tension traps. We show that above a critical flow rate, large anchored droplets break up to form two daughter droplets, one of which remains in the anchor. Below the critical flow velocity for breakup the shape of the anchored drop is given by an elastica equation that depends on the capillary number of the outer fluid. As the velocity crosses the critical value, the equation stops admitting a solution that satisfies the boundary conditions; the drop breaks up in spite of the neck still having finite width. A similar breaking event also takes place between the holes of an array of anchors, which we use to produce a 2D array of stationary drops in situ.Comment: 5 pages, 4 figures, to appear in Phys. Rev. Applie

    Doeblin Trees

    Full text link
    This paper is centered on the random graph generated by a Doeblin-type coupling of discrete time processes on a countable state space whereby when two paths meet, they merge. This random graph is studied through a novel subgraph, called a bridge graph, generated by paths started in a fixed state at any time. The bridge graph is made into a unimodular network by marking it and selecting a root in a specified fashion. The unimodularity of this network is leveraged to discern global properties of the larger Doeblin graph. Bi-recurrence, i.e., recurrence both forwards and backwards in time, is introduced and shown to be a key property in uniquely distinguishing paths in the Doeblin graph, and also a decisive property for Markov chains indexed by Z\mathbb{Z}. Properties related to simulating the bridge graph are also studied.Comment: 44 pages, 4 figure

    Updated estimate of the duration of the meningo-encephalitic stage in gambiense human African trypanosomiasis

    Get PDF
    Background: The duration of the stages of HAT is an important factor in epidemiological studies and intervention planning. Previously, we published estimates of the duration of the haemo-lymphatic stage 1 and meningo-encephalitic stage 2 of the gambiense form of human African trypanosomiasis (HAT), in the absence of treatment. Here we revise the estimate of stage 2 duration, computed based on data from Uganda and South Sudan, by adjusting observed infection prevalence for incomplete case detection coverage and diagnostic inaccuracy. Findings: The revised best estimate for the mean duration of stage 2 is 252 days (95% CI 171–399), about half of our initial best estimate, giving a total mean duration of untreated gambiense HAT infection of approximately 2 years and 2 months. Conclusions: Our new estimate provides improved information on the transmission dynamics of this neglected tropical disease in Uganda and South Sudan. We stress that there remains considerable variability around the estimated mean values, and that one must be cautious in applying these results to other foci

    Advances in Feature Selection with Mutual Information

    Full text link
    The selection of features that are relevant for a prediction or classification problem is an important problem in many domains involving high-dimensional data. Selecting features helps fighting the curse of dimensionality, improving the performances of prediction or classification methods, and interpreting the application. In a nonlinear context, the mutual information is widely used as relevance criterion for features and sets of features. Nevertheless, it suffers from at least three major limitations: mutual information estimators depend on smoothing parameters, there is no theoretically justified stopping criterion in the feature selection greedy procedure, and the estimation itself suffers from the curse of dimensionality. This chapter shows how to deal with these problems. The two first ones are addressed by using resampling techniques that provide a statistical basis to select the estimator parameters and to stop the search procedure. The third one is addressed by modifying the mutual information criterion into a measure of how features are complementary (and not only informative) for the problem at hand

    Rayleigh-Taylor instability under an inclined plane

    Get PDF
    We revisit the canonical Rayleigh-Taylor instability and investigate the case of a thin film of fluid upon the underside of an inclined plane. The presence of a natural flow along the plane competes with the conventional droplet forming instability. In particular, experiments reveal that no drops form for inclinations greater than a critical value. These features are rationalized in the context of the absolute/convective analysis conducted in this article

    Crosstalk between nanotube devices: contact and channel effects

    Full text link
    At reduced dimensionality, Coulomb interactions play a crucial role in determining device properties. While such interactions within the same carbon nanotube have been shown to have unexpected properties, device integration and multi-nanotube devices require the consideration of inter-nanotube interactions. We present calculations of the characteristics of planar carbon nanotube transistors including interactions between semiconducting nanotubes and between semiconducting and metallic nanotubes. The results indicate that inter-tube interactions affect both the channel behavior and the contacts. For long channel devices, a separation of the order of the gate oxide thickness is necessary to eliminate inter-nanotube effects. Because of an exponential dependence of this length scale on dielectric constant, very high device densities are possible by using high-k dielectrics and embedded contacts
    • …
    corecore