730 research outputs found

    How to Foresee and Capture the Effects of RFID Implementation

    Full text link

    Bisphosphonates antagonise bone growth factors' effects on human breast cancer cells survival

    Get PDF
    Bone tissue constitutes a fertile 'soil' for metastatic tumours, notably breast cancer. High concentrations of growth factors in bone matrix favour cancer cell proliferation and survival, and a vicious cycle settles between bone matrix, osteoclasts and cancer cells. Classically, bisphosphonates interrupt this vicious cycle by inhibiting osteoclast-mediated bone resorption. We and others recently reported that bisphosphonates can also induce human breast cancer cell death in vitro, which could contribute to their beneficial clinical effects. We hypothesised that bisphosphonates could inhibit the favourable effects of 'bone-derived' growth factors, and indeed found that bisphosphonates reduced or abolished the stimulatory effects of growth factors (IGFs, FGF-2) on MCF-7 and T47D cell proliferation and inhibited their protective effects on apoptotic cell death in vitro under serum-free conditions. This could happen through an interaction with growth factors' intracellular phosphorylation transduction pathways, such as ERK1/2-MAPK. In conclusion, we report that bisphosphonates antagonised the stimulatory effects of growth factors on human breast cancer cell survival and reduced their protective effects against apoptotic cell death. Bisphosphonates and growth factors thus appear to be concurrent compounds for tumour cell growth and survival in bone tissue. This could represent a new mechanism of action of bisphosphonates in their protective effects against breast cancer-induced osteolysis.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Combined effects of a third-generation bisphosphonate, zoledronic acid with other anticancer agents against murine osteosarcoma

    Get PDF
    Bisphosphonates (BPs) are widely used to treat bone diseases and also appear to possess direct antitumour activity. We have previously reported that third-generation BPs such as zoledronic acid (ZOL) and minodronic acid (YM529) synergistically augment the effects of anticancer agents in various cancer cells. Recently, we have also reported the antitumour effects of YM529 on murine osteosarcoma cells. As YM529 has not been clinically available, we herein focused on the anti-osteosarcoma effects of ZOL which is clinically available. In addition to ZOL alone, we evaluated the concurrent or sequential combined effects of ZOL with other anticancer agents against murine osteosarcoma cell lines. ZOL showed almost same anti-osteosarcoma activity compared with YM529 and more sensitive growth inhibitory effects against osteosarcoma cells than normal cells. Moreover, ZOL acted synergistically in vitro when administered concurrently with paclitaxel (PAC) or gemcitabine (GEM), not only in wild-type osteosarcoma cells but also in P-glycoprotein (P-gp)-overexpressing osteosarcoma cells, which were much less sensitive against each anticancer agent. Furthermore, 24 h of ZOL pretreatment significantly augmented the sensitivity of doxorubicin (DOX), PAC or GEM against osteosarcoma cells. These findings suggest that combined administration of ZOL with other anticancer agents may improve the osteosarcoma treatment

    The contribution of Swiss scientists to the assessment of energy metabolism

    Get PDF
    Although Switzerland is considered a small country, it has its share in discoveries, inventions and developments for the assessment of energy metabolism. This includes seminal contributions to respiratory and metabolic physiology and to devices for measuring energy expenditure by direct and indirect calorimetry in vivo in humans and small animals (as well as in vitro in organs/tissues), for the purpose of evaluating the basic nutritional requirements. A strong momentum came during World War II when it was necessary to evaluate the energy requirements of soldiers protecting the country by assessing their energy expenditure, as well as to determine the nutritional needs of the Swiss civil population in time of war when food rationing was necessary to ensure national neutrality and independence. A further impetus came in the 1970s at the start of the obesity epidemics, toward a better understanding of the metabolic basis of obesity, ranging from the development of whole-body concepts to molecular mechanisms. In a trip down memory lane, this review focuses on some of the earlier leading Swiss scientists who have contributed to a better understanding of the field
    corecore