1,387 research outputs found
Carrier-induced ferromagnetism in p-Zn1-xMnxTe
We present a systematic study of the ferromagnetic transition induced by the
holes in nitrogen doped Zn1-xMnxTe epitaxial layers, with particular emphasis
on the values of the Curie-Weiss temperature as a function of the carrier and
spin concentrations. The data are obtained from thorough analyses of the
results of magnetization, magnetoresistance and spin-dependent Hall effect
measurements. The experimental findings compare favorably, without adjustable
parameters, with the prediction of the Rudermann-Kittel-Kasuya-Yosida (RKKY)
model or its continuous-medium limit, that is, the Zener model, provided that
the presence of the competing antiferromagnetic spin-spin superexchange
interaction is taken into account, and the complex structure of the valence
band is properly incorporated into the calculation of the spin susceptibility
of the hole liquid. In general terms, the findings demonstrate how the
interplay between the ferromagnetic RKKY interaction, carrier localization, and
intrinsic antiferromagnetic superexchange affects the ordering temperature and
the saturation value of magnetization in magnetically and electrostatically
disordered systems.Comment: 14 pages, 10 figure
Matter Mixing in Aspherical Core-collapse Supernovae: Three-dimensional Simulations with Single Star and Binary Merger Progenitor Models for SN 1987A
We perform three-dimensional hydrodynamic simulations of aspherical core-collapse supernovae focusing on the matter mixing in SN 1987A. The impacts of four progenitor (pre-supernova) models and parameterized aspherical explosions are investigated. The four pre-supernova models include a blue supergiant (BSG) model based on a slow merger scenario developed recently for the progenitor of SN 1987A (Urushibata et al. 2018). The others are a BSG model based on a single star evolution and two red supergiant (RSG) models. Among the investigated explosion (simulation) models, a model with the binary merger progenitor model and with an asymmetric bipolar-like explosion, which invokes a jetlike explosion, best reproduces constraints on the mass of high velocity Ni, as inferred from the observed [Fe II] line profiles. The advantage of the binary merger progenitor model for the matter mixing is the flat and less extended profile of the C+O core and the helium layer, which may be characterized by the small helium core mass. From the best explosion model, the direction of the bipolar explosion axis (the strongest explosion direction), the neutron star (NS) kick velocity, and its direction are predicted. Other related implications and future prospects are also given
Observation of strong-coupling effects in a diluted magnetic semiconductor (Ga,Fe)N
A direct observation of the giant Zeeman splitting of the free excitons in
(Ga,Fe)N is reported. The magnetooptical and magnetization data imply the
ferromagnetic sign and a reduced magnitude of the effective p-d exchange energy
governing the interaction between Fe^{3+} ions and holes in GaN, N_0 beta^(app)
= +0.5 +/- 0.2 eV. This finding corroborates the recent suggestion that the
strong p-d hybridization specific to nitrides and oxides leads to significant
renormalization of the valence band exchange splitting.Comment: 4 pages, 2 figure
Suppression of carrier induced ferromagnetism by composition and spin fluctuations in diluted magnetic semiconductors
We suggest an approach to account for spatial (composition) and thermal
fluctuations in "disordered" magnetic models (e.g. Heisenberg, Ising) with
given spatial dependence of magnetic spin-spin interaction. Our approach is
based on introduction of fluctuating molecular field (rather than mean field)
acting between the spins. The distribution function of the above field is
derived self-consistently. In general case this function is not Gaussian,
latter asymptotics occurs only at sufficiently large spins (magnetic ions)
concentrations . Our approach permits to derive the equation for a
critical temperature of ferromagnetic phase transition with respect to
the above fluctuations. We apply our theory to the analysis of influence of
composition fluctuations on in diluted magnetic semiconductors (DMS) with
RKKY indirect spin-spin interaction.Comment: 6 pages, 2 figure
Inverse problem and Bertrand's theorem
The Bertrand's theorem can be formulated as the solution of an inverse
problem for a classical unidimensional motion. We show that the solutions of
these problems, if restricted to a given class, can be obtained by solving a
numerical equation. This permit a particulary compact and elegant proof of
Bertrand's theorem.Comment: 11 pages, 3 figure
Light and electric field control of ferromagnetism in magnetic quantum structures
A strong influence of illumination and electric bias on the Curie temperature
and saturation value of the magnetization is demonstrated for semiconductor
structures containing a modulation-doped p-type Cd0.96Mn0.04Te quantum well
placed in various built-in electric fields. It is shown that both light beam
and bias voltage generate an isothermal and reversible cross-over between the
paramagnetic and ferromagnetic phases, in the way that is predetermined by the
structure design. The observed behavior is in quantitative agreement with the
expectations for systems, in which ferromagnetic interactions are mediated by
the weakly disordered two-dimensional hole liquid.Comment: 4 pages and 3 figure
Influence of s,p-d and s-p exchange couplings on exciton splitting in (Zn,Mn)O
This work presents results of near-band gap magnetooptical studies on
(Zn,Mn)O epitaxial layers. We observe excitonic transitions in reflectivity and
photoluminescence, that shift towards higher energies when the Mn concentration
increases and split nonlinearly under the magnetic field. Excitonic shifts are
determined by the s,p-d exchange coupling to magnetic ions, by the
electron-hole s-p exchange, and the spin-orbit interactions. A quantitative
description of the magnetoreflectivity findings indicates that the free
excitons A and B are associated with the Gamma_7 and Gamma_9 valence bands,
respectively, the order reversed as compared to wurtzite GaN. Furthermore, our
results show that the magnitude of the giant exciton splittings, specific to
dilute magnetic semiconductors, is unusual: the magnetoreflectivity data is
described by an effective exchange energy N_0(beta-alpha)=+0.2+/-0.1 eV, what
points to small and positive N_0 beta. It is shown that both the increase of
the gap with x and the small positive value of the exchange energy N_0 beta
corroborate recent theory describing the exchange splitting of the valence band
in a non-perturbative way, suitable for the case of a strong p-d hybridization.Comment: 8 pages, 8 figure
Bound Magnetic Polaron Interactions in Insulating Doped Diluted Magnetic Semiconductors
The magnetic behavior of insulating doped diluted magnetic semiconductors
(DMS) is characterized by the interaction of large collective spins known as
bound magnetic polarons. Experimental measurements of the susceptibility of
these materials have suggested that the polaron-polaron interaction is
ferromagnetic, in contrast to the antiferromagnetic carrier-carrier
interactions that are characteristic of nonmagnetic semiconductors. To explain
this behavior, a model has been developed in which polarons interact via both
the standard direct carrier-carrier exchange interaction (due to virtual
carrier hopping) and an indirect carrier-ion-carrier exchange interaction (due
to the interactions of polarons with magnetic ions in an interstitial region).
Using a variational procedure, the optimal values of the model parameters were
determined as a function of temperature. At temperatures of interest, the
parameters describing polaron-polaron interactions were found to be nearly
temperature-independent. For reasonable values of these constant parameters, we
find that indirect ferromagnetic interactions can dominate the direct
antiferromagnetic interactions and cause the polarons to align. This result
supports the experimental evidence for ferromagnetism in insulating doped DMS.Comment: 11 pages, 7 figure
Initial Data for General Relativity with Toroidal Conformal Symmetry
A new class of time-symmetric solutions to the initial value constraints of
vacuum General Relativity is introduced. These data are globally regular,
asymptotically flat (with possibly several asymptotic ends) and in general have
no isometries, but a group of conformal isometries. After
decomposing the Lichnerowicz conformal factor in a double Fourier series on the
group orbits, the solutions are given in terms of a countable family of
uncoupled ODEs on the orbit space.Comment: REVTEX, 9 pages, ESI Preprint 12
- …
