2,428 research outputs found
Large scale distribution of total mass versus luminous matter from Baryon Acoustic Oscillations: First search in the SDSS-III BOSS Data Release 10
Baryon Acoustic Oscillations (BAOs) in the early Universe are predicted to
leave an as yet undetected signature on the relative clustering of total mass
versus luminous matter. A detection of this effect would provide an important
confirmation of the standard cosmological paradigm and constrain alternatives
to dark matter as well as non-standard fluctuations such as Compensated
Isocurvature Perturbations (CIPs). We conduct the first observational search
for this effect, by comparing the number-weighted and luminosity-weighted
correlation functions, using the SDSS-III BOSS Data Release 10 CMASS sample.
When including CIPs in our model, we formally obtain evidence at of
the relative clustering signature and a limit that matches the existing upper
limits on the amplitude of CIPs. However, various tests suggest that these
results are not yet robust, perhaps due to systematic biases in the data. The
method developed in this Letter, used with more accurate future data such as
that from DESI, is likely to confirm or disprove our preliminary evidence.Comment: 6 pages, 2 figures, accepted for publication in PR
Best-Bet Astrophysical Neutrino Sources
Likely astrophysical sources of detectable high-energy (>> TeV) neutrinos are
considered. Based on gamma-ray emission properties, the most probable sources
of neutrinos are argued to be GRBs, blazars, microquasars, and supernova
remnants. Diffuse neutrino sources are also briefly considered.Comment: 6 pages, 2 figures, in Proc. of TeV-Particle Astrophysics II,
Madison, WI, 28-31 Aug, 200
Measuring the Size of Quasar Broad-Line Clouds Through Time Delay Light-Curve Anomalies of Gravitational Lenses
Intensive monitoring campaigns have recently attempted to measure the time
delays between multiple images of gravitational lenses. Some of the resulting
light-curves show puzzling low-level, rapid variability which is unique to
individual images, superimposed on top of (and concurrent with) longer
time-scale intrinsic quasar variations which repeat in all images. We
demonstrate that both the amplitude and variability time-scale of the rapid
light-curve anomalies, as well as the correlation observed between intrinsic
and microlensed variability, are naturally explained by stellar microlensing of
a smooth accretion disk which is occulted by optically-thick broad-line clouds.
The rapid time-scale is caused by the high velocities of the clouds (~5x10^3
km/s), and the low amplitude results from the large number of clouds covering
the magnified or demagnified parts of the disk. The observed amplitudes of
variations in specific lenses implies that the number of broad-line clouds that
cover ~10% of the quasar sky is ~10^5 per 4 pi steradian. This is comparable to
the expected number of broad line clouds in models where the clouds originate
from bloated stars.Comment: 19 pages, 9 figures. Submitted to Ap
Field theory of the photon self-energy in a medium with a magnetic field and the Faraday effect
A convenient and general decomposition of the photon self-energy in a
magnetized, but otherwise isotropic, medium is given in terms of the minimal
set of tensors consistent with the transversality condition. As we show, the
self-energy in such a medium is completely parametrized in terms of nine
independent form factors, and they reduce to three in the long wavelength
limit. We consider in detail an electron gas with a background magnetic field,
and using finite temperature field theory methods, we obtain the one-loop
formulas for the form factors, which are exact to all orders in the magnetic
field. Explicit results are derived for a variety of physical conditions. In
the appropriate limits, we recover the well-known semi-classical results for
the photon dispersion relations and the Faraday effect. In more general cases,
where the semi-classical treatment or the linear approximation (weak field
limit) are not applicable, our formulas provide a consistent and systematic way
for computing the self-energy form factors and, from them, the photon
dispersion relations.Comment: Revtex, 27 page
The Race Between Stars and Quasars in Reionizing Cosmic Hydrogen
The cosmological background of ionizing radiation has been dominated by
quasars once the Universe aged by ~2 billion years. At earlier times (redshifts
z>3), the observed abundance of bright quasars declined sharply, implying that
cosmic hydrogen was reionized by stars instead. Here, we explain the physical
origin of the transition between the dominance of stars and quasars as a
generic feature of structure formation in the concordance LCDM cosmology. At
early times, the fraction of baryons in galaxies grows faster than the maximum
(Eddington-limited) growth rate possible for quasars. As a result, quasars were
not able to catch up with the rapid early growth of stellar mass in their host
galaxies.Comment: 5 pages, 1 figure, Accepted for publication in JCA
Overall Evolution of Realistic Gamma-ray Burst Remnant and Its Afterglow
Conventional dynamic model of gamma-ray burst remnants is found to be
incorrect for adiabatic blastwaves during the non-relativistic phase. A new
model is derived, which is shown to be correct for both radiative and adiabatic
blastwaves during both ultra-relativistic and non-relativistic phase. Our model
also takes the evolution of the radiative efficiency into account. The
importance of the transition from the ultra-relativistic phase to the
non-relativistic phase is stressed.Comment: 9 pages, aasms4 style, 3 ps figures, minor changes, will be published
in Chin. Phys. Let
Upper Limits to Fluxes of Neutrinos and Gamma-Rays from Starburst Galaxies
Loeb and Waxman have argued that high energy neutrinos from the decay of
pions produced in interactions of cosmic rays with interstellar gas in
starburst galaxies would be produced with a large enough flux to be observable.
Here we obtain an upper limit to the diffuse neutrino flux from starburst
galaxies which is a factor of 5 lower than the flux which they predict.
Compared with predicted fluxes from other extragalactic high energy neutrino
sources, starburst neutrinos with PeV energies would have a flux
considerably below that predicted for AGN models. We also estimate an upper
limit for the diffuse GeV -ray flux from starbust galaxies to be
of the observed -ray background, much less than
the component from unresolved blazars.Comment: 4 pages, for Proc. TeV2 Conf., Madison, WI, to be published in J.
Phy
Pseudoconvex domains spread over complex homogeneous manifolds
Using the concept of inner integral curves defined by Hirschowitz we
generalize a recent result by Kim, Levenberg and Yamaguchi concerning the
obstruction of a pseudoconvex domain spread over a complex homogeneous manifold
to be Stein. This is then applied to study the holomorphic reduction of
pseudoconvex complex homogeneous manifolds X=G/H. Under the assumption that G
is solvable or reductive we prove that X is the total space of a G-equivariant
holomorphic fiber bundle over a Stein manifold such that all holomorphic
functions on the fiber are constant.Comment: 21 page
Light-cone averaging in cosmology: formalism and applications
We present a general gauge invariant formalism for defining cosmological
averages that are relevant for observations based on light-like signals. Such
averages involve either null hypersurfaces corresponding to a family of past
light-cones or compact surfaces given by their intersection with timelike
hypersurfaces. Generalized Buchert-Ehlers commutation rules for derivatives of
these light-cone averages are given. After introducing some adapted "geodesic
light-cone" coordinates, we give explicit expressions for averaging the
redshift to luminosity-distance relation and the so-called "redshift drift" in
a generic inhomogeneous Universe.Comment: 20 pages, 2 figures. Comments and references added, typos corrected.
Version accepted for publication in JCA
Probing Red Giant Atmospheres with Gravitational Microlensing
Gravitational microlensing provides a new technique for studying the surfaces
of distant stars. Microlensing events are detected in real time and can be
followed up with precision photometry and spectroscopy. This method is
particularly adequate for studying red giants in the Galactic bulge. Recently
we developed an efficient method capable of computing the lensing effect for
thousands of frequencies in a high-resolution stellar spectrum. Here we
demonstrate the effects of microlensing on synthesized optical spectra of red
giant model atmospheres. We show that different properties of the stellar
surface can be recovered from time-dependent photometry and spectroscopy of a
point-mass microlensing event with a small impact parameter. In this study we
concentrate on center-to-limb variation of spectral features. Measuring such
variations can reveal the depth structure of the atmosphere of the source star.Comment: 23 pages with 11 Postscript figures, submitted to ApJ; Section 2
expanded, references added, text revise
- …