61,844 research outputs found
Deformation compatibility in a single crystalline Ni superalloy
Deformation in materials is often complex and requires rigorous understanding to predict engineering component lifetime. Experimental understanding of deformation requires utilization of advanced characterization techniques, such as high spatial resolution digital image correlation (HR-DIC) and high angular resolution electron backscatter diffraction (HR-EBSD), combined with clear interpretation of their results to understand how a material has deformed. In this study, we use HR-DIC and HR-EBSD to explore the mechanical behaviour of a single-crystal nickel alloy and to highlight opportunities to understand the complete deformations state in materials. Coupling of HR-DIC and HR-EBSD enables us to precisely focus on the extent which we can access the deformation gradient, F, in its entirety and uncouple contributions from elastic deformation gradients, slip and rigid body rotations. Our results show a clear demonstration of the capabilities of these techniques, found within our experimental toolbox, to underpin fundamental mechanistic studies of deformation in polycrystalline materials and the role of microstructure
Investigation of a universal behavior between N\'eel temperature and staggered magnetization density for a three-dimensional quantum antiferromagnet
We simulate the three-dimensional quantum Heisenberg model with a spatially
anisotropic ladder pattern using the first principles Monte Carlo method. Our
motivation is to investigate quantitatively the newly established universal
relation near the quantum critical
point (QCP) associated with dimerization. Here , , and are
the N\'eel temperature, the spinwave velocity, and the staggered magnetization
density, respectively. For all the physical quantities considered here, such as
and , our Monte Carlo results agree nicely with the
corresponding results determined by the series expansion method. In addition,
we find it is likely that the effect of a logarithmic correction, which should
be present in (3+1)-dimensions, to the relation
near the investigated QCP only sets in significantly in the region
with strong spatial anisotropy.Comment: 5 pages, 7 figures, 2 table
A new and finite family of solutions of hydrodynamics. Part I: Fits to pseudorapidity distributions
We highlight some of the interesting properties of a new and finite, exact
family of solutions of 1 + 1 dimensional perfect fluid relativistic
hydrodynamics. After reviewing the main properties of this family of solutions,
we present the formulas that connect it to the measured rapidity and
pseudo-rapidity densities and illustrate the results with fits to p+p
collisions at 8 TeV and Pb+Pb collisions at TeV.Comment: Invited talk of T. Csorgo at the WPCF 2018 conference in Cracow,
Poland, May 22-26, 2018. Submitted to Acta Physica Polonica
Diffusion induced decoherence of stored optical vortices
We study the coherence properties of optical vortices stored in atomic
ensembles. In the presence of thermal diffusion, the topological nature of
stored optical vortices is found not to guarantee slow decoherence. Instead the
stored vortex state has decoherence surprisingly larger than the stored
Gaussian mode. Generally, the less phase gradient, the more robust for stored
coherence against diffusion. Furthermore, calculation of coherence factor shows
that the center of stored vortex becomes completely incoherent once diffusion
begins and, when reading laser is applied, the optical intensity at the center
of the vortex becomes nonzero. Its implication for quantum information is
discussed. Comparison of classical diffusion and quantum diffusion is also
presented.Comment: 5 pages, 2 figure
- β¦