42 research outputs found

    Engineering an artificial pathway for Cis-Α-irone biosynthesis

    Get PDF
    Please click Additional Files below to see the full abstrac

    Engineering an artificial pathway for Cis-alpha-irone biosynthesis

    Get PDF
    Please click Additional Files below to see the full abstrac

    Assignment of PolyProline II Conformation and Analysis of Sequence – Structure Relationship

    Get PDF
    International audienceBACKGROUND: Secondary structures are elements of great importance in structural biology, biochemistry and bioinformatics. They are broadly composed of two repetitive structures namely α-helices and β-sheets, apart from turns, and the rest is associated to coil. These repetitive secondary structures have specific and conserved biophysical and geometric properties. PolyProline II (PPII) helix is yet another interesting repetitive structure which is less frequent and not usually associated with stabilizing interactions. Recent studies have shown that PPII frequency is higher than expected, and they could have an important role in protein - protein interactions. METHODOLOGY/PRINCIPAL FINDINGS: A major factor that limits the study of PPII is that its assignment cannot be carried out with the most commonly used secondary structure assignment methods (SSAMs). The purpose of this work is to propose a PPII assignment methodology that can be defined in the frame of DSSP secondary structure assignment. Considering the ambiguity in PPII assignments by different methods, a consensus assignment strategy was utilized. To define the most consensual rule of PPII assignment, three SSAMs that can assign PPII, were compared and analyzed. The assignment rule was defined to have a maximum coverage of all assignments made by these SSAMs. Not many constraints were added to the assignment and only PPII helices of at least 2 residues length are defined. CONCLUSIONS/SIGNIFICANCE: The simple rules designed in this study for characterizing PPII conformation, lead to the assignment of 5% of all amino as PPII. Sequence - structure relationships associated with PPII, defined by the different SSAMs, underline few striking differences. A specific study of amino acid preferences in their N and C-cap regions was carried out as their solvent accessibility and contact patterns. Thus the assignment of PPII can be coupled with DSSP and thus opens a simple way for further analysis in this field

    Comparative Phylogeography of a Coevolved Community: Concerted Population Expansions in Joshua Trees and Four Yucca Moths

    Get PDF
    Comparative phylogeographic studies have had mixed success in identifying common phylogeographic patterns among co-distributed organisms. Whereas some have found broadly similar patterns across a diverse array of taxa, others have found that the histories of different species are more idiosyncratic than congruent. The variation in the results of comparative phylogeographic studies could indicate that the extent to which sympatrically-distributed organisms share common biogeographic histories varies depending on the strength and specificity of ecological interactions between them. To test this hypothesis, we examined demographic and phylogeographic patterns in a highly specialized, coevolved community – Joshua trees (Yucca brevifolia) and their associated yucca moths. This tightly-integrated, mutually interdependent community is known to have experienced significant range changes at the end of the last glacial period, so there is a strong a priori expectation that these organisms will show common signatures of demographic and distributional changes over time. Using a database of >5000 GPS records for Joshua trees, and multi-locus DNA sequence data from the Joshua tree and four species of yucca moth, we combined paleaodistribution modeling with coalescent-based analyses of demographic and phylgeographic history. We extensively evaluated the power of our methods to infer past population size and distributional changes by evaluating the effect of different inference procedures on our results, comparing our palaeodistribution models to Pleistocene-aged packrat midden records, and simulating DNA sequence data under a variety of alternative demographic histories. Together the results indicate that these organisms have shared a common history of population expansion, and that these expansions were broadly coincident in time. However, contrary to our expectations, none of our analyses indicated significant range or population size reductions at the end of the last glacial period, and the inferred demographic changes substantially predate Holocene climate changes

    Seed banks in a degraded desert shrubland: Influence of soil surface condition and harvester ant activity on seed abundance

    No full text
    We compared seed banks between two contrasting anthropogenic surface disturbances (compacted, trenched) and adjacent undisturbed controls to determine whether site condition influences viable seed densities of perennial and annual Mojave Desert species. Viable seeds of perennials were rare in undisturbed areas (3–4 seeds/m2) and declined to \u3c1 seed/m2 within disturbed sites. Annual seed densities were an order of magnitude greater than those of perennials, were one-third the undisturbed seed densities on compacted sites, but doubled on trenched sites relative to controls. On trenched sites, greater litter cover comprising the infructescences of the dominant spring annuals, and low gravel content, enhanced seed densities of both annuals and perennials. Litter cover and surface ruggedness were the best explanations for viable perennial seed densities on compacted sites, but litter cover and the presence of a common harvester ant explained annual seed densities better than any other surface characteristics that were examined. Surface disturbances can have a varied impact on the condition of the soil surface in arid lands. Nevertheless, the consistently positive relationship between ground cover of litter and viable seed density emphasizes the importance of litter as an indicator of site degradation and recovery potential in arid lands

    Mutagenesis of Dimer Interfacial Residues Improves the Activity and Specificity of Methyltransferase for cis -α-Irone Biosynthesis

    No full text
    International audiencePromiscuous enzymes show great potential to establish new-to-nature pathways and expand chemical diversity. Enzyme engineering strategies are often employed to tailor such enzymes to improve their activity or specificity. It is paramount to identify the target residues to be mutated. Here, by exploring the inactivation mechanism with the aid of mass spectrometry, we have identified and mutated critical residues at the dimer interface region of the promiscuous methyltransferase (pMT) that converts psi-ionone to irone. The optimized pMT12 mutant showed ∼1.6–4.8-fold higher kcat than the previously reported best mutant, pMT10, and increased the cis-α-irone percentage from ∼70 to ∼83%. By one-step biotransformation, ∼121.8 mg L–1 cis-α-irone was produced from psi-ionone by the pMT12 mutant. The study offers new opportunities to engineer enzymes with enhanced activity and specificity
    corecore