559 research outputs found

    Multipole Expansion for Relativistic Coulomb Excitation

    Get PDF
    We derive a general expression for the multipole expansion of the electro-magnetic interaction in relativistic heavy-ion collisions, which can be employed in higher-order dynamical calculations of Coulomb excitation. The interaction has diagonal as well as off-diagonal multipole components, associated with the intrinsic and relative coordinates of projectile and target. A simple truncation in the off-diagonal components gives excellent results in first-order perturbation theory for distant collisions and for beam energies up to 200 MeV/nucleon.Comment: 3 figures, Accepted for publication in Phys. Rev.

    Recent developments in the eikonal description of the breakup of exotic nuclei

    Full text link
    The study of exotic nuclear structures, such as halo nuclei, is usually performed through nuclear reactions. An accurate reaction model coupled to a realistic description of the projectile is needed to correctly interpret experimental data. In this contribution, we briefly summarise the assumptions made within the modelling of reactions involving halo nuclei. We describe briefly the Continuum-Discretised Coupled Channel method (CDCC) and the Dynamical Eikonal Approximation (DEA) in particular and present a comparison between them for the breakup of 15C on Pb at 68AMeV. We show the problem faced by the models based on the eikonal approximation at low energy and detail a correction that enables their extension down to lower beam energies. A new reaction observable is also presented. It consists of the ratio between angular distributions for two different processes, such as elastic scattering and breakup. This ratio is completely independent of the reaction mechanism and hence is more sensitive to the projectile structure than usual reaction observables, which makes it a very powerful tool to study exotic structures far from stability.Comment: Contribution to the proceedings of the XXI International School on Nuclear Physics and Applications & the International Symposium on Exotic Nuclei, dedicated to the 60th Anniversary of the JINR (Dubna) (Varna, Bulgaria, 6-12 September 2015), 7 pages, 4 figure

    Time-dependent wave-packet approach for fusion reactions of halo nuclei

    Full text link
    The fusion reaction of a halo nucleus 11Be on 208Pb is described by a three-body direct reaction model. A time-dependent wave packet approach is applied to a three-body reaction problem. The wave packet approach enables us to obtain scattering solutions without considering the three-body scattering boundary conditions. The time evolution of the wave packet also helps us to obtain intuitive understanding of the reaction dynamics. The calculations indicate a decrease of the fusion probability by the presence of the halo neutron.Comment: 7 pages, 3 figures, use espcrc1.sty, Talk at the International Symposium on "Physics of Unstable Nuclei (ISPUN02)", Halong Bay, Vietnam, November 20-25, 200

    3-D unrestricted TDHF fusion calculations using the full Skyrme interaction

    Full text link
    We present a study of fusion cross sections using a new generation Time-Dependent Hartree-Fock (TDHF) code which contains no approximations regarding collision geometry and uses the full Skyrme interaction, including all of the time-odd terms. In addition, the code uses the Basis-Spline collocation method for improved numerical accuracy. A comparative study of fusion cross sections for 16O+16,28O^{16}O + ^{16,28}O is made with the older TDHF results and experiments. We present results using the modern Skyrme forces and discuss the influence of the new terms present in the interaction.Comment: 7 pages, 10 figure

    S17(0) Determined from the Coulomb Breakup of 83 MeV/nucleon 8B

    Get PDF
    A kinematically complete measurement was made of the Coulomb dissociation of 8B nuclei on a Pb target at 83 MeV/nucleon. The cross section was measured at low relative energies in order to infer the astrophysical S factor for the 7Be(p,gamma)8B reaction. A first-order perturbation theory analysis of the reaction dynamics including E1, E2, and M1 transitions was employed to extract the E1 strength relevant to neutrino-producing reactions in the solar interior. By fitting the measured cross section from Erel = 130 keV to 400 keV, we find S17(0) = 17.8 (+1.4, -1.2) eV b

    Region of hadron-quark mixed phase in hybrid stars

    Get PDF
    Hadron--quark mixed phase is expected in a wide region of the inner structure of hybrid stars. However, we show that the hadron--quark mixed phase should be restricted to a narrower region to because of the charge screening effect. The narrow region of the mixed phase seems to explain physical phenomena of neutron stars such as the strong magnetic field and glitch phenomena, and it would give a new cooling curve for the neutron star.Comment: to be published in Physical Review

    Many-body approach to the nonlinear interaction of charged particles with an interacting free electron gas

    Get PDF
    We report various many-body theoretical approaches to the nonlinear decay rate and energy loss of charged particles moving in an interacting free electron gas. These include perturbative formulations of the scattering matrix, the self-energy, and the induced electron density. Explicit expressions for these quantities are obtained, with inclusion of exchange and correlation effects.Comment: 11 pages, 5 figures. To appear in Journal of Physics

    Coulomb-nuclear interference in the breakup of 11^{11}Be

    Get PDF
    Within a theory of breakup reactions formulated in the framework of the post form distorted wave Born approximation, we calculate contributions of the pure Coulomb and the pure nuclear breakup as well as those of their interference terms to a variety of cross sections in breakup reactions of the one-neutron halo nucleus 11^{11}Be on a number of target nuclei. In contrast to the assumption often made, the Coulomb-nuclear interference terms are found to be non-negligible in case of exclusive cross sections of the fragments emitted in this reaction on medium mass and heavy target nuclei. The consideration of the nuclear breakup leads to a better description of such data.Comment: 9 pages, latex, 2 figures, to be published in Phys. Rev. C (Rapid Communication

    Calculations of three-body observables in ^8B breakup

    Get PDF
    We discuss calculations of three-body observables for the breakup of ^8B on a ^{58}Ni target at low energy using the coupled discretised continuum channels approach. Calculations of both the angular distribution of the ^7Be fragments and their energy distributions are compared with those measured at several laboratory angles. In these observables there is interference between the breakup amplitudes from different spin-parity excitations of the projectile. The resulting angle and the energy distributions reveal the importance of the higher-order continuum state couplings for an understanding of the measurements.Comment: 22 pages (postscript), accepted in Phys. Rev.

    Decay Rate of Triaxially-Deformed Proton Emitters

    Full text link
    The decay rate of a triaxially-deformed proton emitter is calculated in a particle-rotor model, which is based on a deformed Woods-Saxon potential and includes a deformed spin-orbit interaction. The wave function of the I=7/2I=7/2^{-} ground state of the deformed proton emitter 141^{141}Ho is obtained in the adiabatic limit, and a Green's function technique is used to calculate the decay rate and branching ratio to the first excited 2+^{+} state of the daughter nucleus. Only for values of the triaxial angle γ\gamma <5<5^{\circ} is good agreement obtained for both the total decay rate and the 2+^{+} branching ratio.Comment: 19 pages, 4 figure
    corecore