15 research outputs found

    The Distribution, Natural History and the Conservation Status of Batrachostomus Moniliger (Aves: Podargidae) in Last Two Decades from Sri Lanka

    Get PDF
    The Sri Lanka frogmouth (Batrachostomus moniliger) is a small-sized nocturnal bird largely restricted to tropical lowland forests with thick undergrowth. The motionless roosting posture as well as their plumage coloration and color patterns (which resemble that of tree stems and branches) enable them to camouflage and thereby avoid predation. Through opportunistic field surveys over a 20-year period (January 1998-February 2018), we surveyed different bioclimatic regions of Sri Lanka covering 500 sites, and documented presence of Sri Lankan frogmouth in 83 of sites. In these 83 sites, we recorded 136 birds including seven nesting pairs and chicks. Our survey confirmed frogmouth presence in four floristic regions of Sri Lanka, particularly from lower elevations (11-767 m). Most sightings were made in lowland rainforests while savannah woodlands had the least number of records; no frogmouths were recorded inside anthropocentric land-cover types such as commercial-scale farmlands or plantations. According to the habitat suitability model we constructed (MaxEnt-based), much of the lowland wet zone, particularly the southwestern corner, was predicted as the most suitable areas for Sri Lankan Frogmouth while the northeastern coastal plains, and the mid-western and northwestern parts of Sri Lanka seemed least suitable. According to The Maxent model’s internal jackknife test of variable importance, temperature seasonality is the most important predictor of frogmouth’s distribution. Sri Lanka frogmouths have a high fidelity for their roosting sites as they remained in the same tree at least for a week; preferred roosting trees were medium-sized Dicot species with a dense canopy cover and variable canopy heights. These roosting sites are relatively cool, humid with little exposure to direct sunlight. Both roosting and nesting trees were relatively isolated from neighboring canopy trees, thus, the understory surrounding the roosting tree was dense. Six of the nesting sites observed were located in the lowland wet zone rainforests while the other was in savannah woodlands of the intermediate zone. These nests were positioned approximately 66% of maximum canopy height of the host tree. Nests were constructed on relatively thin branches that formed an acute angle against the main stem. These nests are shallow, circular-shaped pads. The nest interior was cushioned with cotton, parts of fishtail palm, and down feathers while the nest exterior contained pieces of lichens and tree bark. Sri Lanka Frogmouth’s home ranges appeared to be very small in nesting season, a maximum of 60 m radius area around the roosting site. Both male and female birds alternate nest-guarding duties through most of the night-time. The major threat for the frogmouth in Sri Lanka includes habitat loss due to expansion of commercial-scale agriculture and monoculture plantations, illicit forest encroachments, and clear-cutting.Keywords: Ecology, Frogmouth, Habitat modeling, Nesting, Threat

    Integrative analysis of large scale expression profiles reveals core transcriptional response and coordination between multiple cellular processes in a cyanobacterium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cyanobacteria are the only known prokaryotes capable of oxygenic photosynthesis. They play significant roles in global biogeochemical cycles and carbon sequestration, and have recently been recognized as potential vehicles for production of renewable biofuels. <it>Synechocystis </it>sp. PCC 6803 has been extensively used as a model organism for cyanobacterial studies. DNA microarray studies in <it>Synechocystis </it>have shown varying degrees of transcriptome reprogramming under altered environmental conditions. However, it is not clear from published work how transcriptome reprogramming affects pre-existing networks of fine-tuned cellular processes.</p> <p>Results</p> <p>We have integrated 163 transcriptome data sets generated in response to numerous environmental and genetic perturbations in <it>Synechocystis</it>. Our analyses show that a large number of genes, defined as the core transcriptional response (CTR), are commonly regulated under most perturbations. The CTR contains nearly 12% of <it>Synechocystis </it>genes found on its chromosome. The majority of genes in the CTR are involved in photosynthesis, translation, energy metabolism and stress protection. Our results indicate that a large number of differentially regulated genes identified in most reported studies in <it>Synechocystis </it>under different perturbations are associated with the general stress response. We also find that a majority of genes in the CTR are coregulated with 25 regulatory genes. Some of these regulatory genes have been implicated in cellular responses to oxidative stress, suggesting that reactive oxygen species are involved in the regulation of the CTR. A Bayesian network, based on the regulation of various KEGG pathways determined from the expression patterns of their associated genes, has revealed new insights into the coordination between different cellular processes.</p> <p>Conclusion</p> <p>We provide here the first integrative analysis of transcriptome data sets generated in a cyanobacterium. This compilation of data sets is a valuable resource to researchers for all cyanobacterial gene expression related queries. Importantly, our analysis provides a global description of transcriptional reprogramming under different perturbations and a basic framework to understand the strategies of cellular adaptations in <it>Synechocystis</it>.</p

    Diurnal Rhythms Result in Significant Changes in the Cellular Protein Complement in the Cyanobacterium Cyanothece 51142

    Get PDF
    Cyanothece sp. ATCC 51142 is a diazotrophic cyanobacterium notable for its ability to perform oxygenic photosynthesis and dinitrogen fixation in the same single cell. Previous transcriptional analysis revealed that the existence of these incompatible cellular processes largely depends on tightly synchronized expression programs involving ∼30% of genes in the genome. To expand upon current knowledge, we have utilized sensitive proteomic approaches to examine the impact of diurnal rhythms on the protein complement in Cyanothece 51142. We found that 250 proteins accounting for ∼5% of the predicted ORFs from the Cyanothece 51142 genome and 20% of proteins detected under alternating light/dark conditions exhibited periodic oscillations in their abundances. Our results suggest that altered enzyme activities at different phases during the diurnal cycle can be attributed to changes in the abundance of related proteins and key compounds. The integration of global proteomics and transcriptomic data further revealed that post-transcriptional events are important for temporal regulation of processes such as photosynthesis in Cyanothece 51142. This analysis is the first comprehensive report on global quantitative proteomics in a unicellular diazotrophic cyanobacterium and uncovers novel findings about diurnal rhythms

    A Day in the Life of Microcystis aeruginosa Strain PCC 7806 as Revealed by a Transcriptomic Analysis

    Get PDF
    The cyanobacterium, Microcystis aeruginosa, is able to proliferate in a wide range of freshwater ecosystems and to produce many secondary metabolites that are a threat to human and animal health. The dynamic of this production and more globally the metabolism of this species is still poorly known. A DNA microarray based on the genome of M. aeruginosa PCC 7806 was constructed and used to study the dynamics of gene expression in this cyanobacterium during the light/dark cycle, because light is a critical factor for this species, like for other photosynthetic microorganisms. This first application of transcriptomics to a Microcystis species has revealed that more than 25% of the genes displayed significant changes in their transcript abundance during the light/dark cycle and in particular during the dark/light transition. The metabolism of M. aeruginosa is compartmentalized between the light period, during which carbon uptake, photosynthesis and the reductive pentose phosphate pathway lead to the synthesis of glycogen, and the dark period, during which glycogen degradation, the oxidative pentose phosphate pathway, the TCA branched pathway and ammonium uptake promote amino acid biosynthesis. We also show that the biosynthesis of secondary metabolites, such as microcystins, aeruginosin and cyanopeptolin, occur essentially during the light period, suggesting that these metabolites may interact with the diurnal part of the central metabolism

    The genome of Cyanothece 51142, a unicellular diazotrophic cyanobacterium important in the marine nitrogen cycle

    Get PDF
    Unicellular cyanobacteria have recently been recognized for their contributions to nitrogen fixation in marine environments, a function previously thought to be filled mainly by filamentous cyanobacteria such as Trichodesmium. To begin a systems level analysis of the physiology of the unicellular N2-fixing microbes, we have sequenced to completion the genome of Cyanothece sp. ATCC 51142, the first such organism. Cyanothece 51142 performs oxygenic photosynthesis and nitrogen fixation, separating these two incompatible processes temporally within the same cell, while concomitantly accumulating metabolic products in inclusion bodies that are later mobilized as part of a robust diurnal cycle. The 5,460,377-bp Cyanothece 51142 genome has a unique arrangement of one large circular chromosome, four small plasmids, and one linear chromosome, the first report of a linear element in the genome of a photosynthetic bacterium. On the 429,701-bp linear chromosome is a cluster of genes for enzymes involved in pyruvate metabolism, suggesting an important role for the linear chromosome in fermentative processes. The annotation of the genome was significantly aided by simultaneous global proteomic studies of this organism. Compared with other nitrogen-fixing cyanobacteria, Cyanothece 51142 contains the largest intact contiguous cluster of nitrogen fixation-related genes. We discuss the implications of such an organization on the regulation of nitrogen fixation. The genome sequence provides important information regarding the ability of Cyanothece 51142 to accomplish metabolic compartmentalization and energy storage, as well as how a unicellular bacterium balances multiple, often incompatible, processes in a single cell
    corecore