612 research outputs found

    A positive energy theorem for Einstein-aether and Ho\v{r}ava gravity

    Full text link
    Energy positivity is established for a class of solutions to Einstein-aether theory and the IR limit of Ho\v{r}ava gravity within a certain range of coupling parameters. The class consists of solutions where the aether 4-vector is divergence free on a spacelike surface to which it is orthogonal (which implies that the surface is maximal). In particular, this result holds for spherically symmetric solutions at a moment of time symmetry.Comment: 4 page

    Higher Curvature Gravity and the Holographic fluid dual to flat spacetime

    Get PDF
    Recent works have demonstrated that one can construct a (d+2) dimensional solution of the vacuum Einstein equations that is dual to a (d+1) dimensional fluid satisfying the incompressible Navier-Stokes equations. In one important example, the fluid lives on a fixed timelike surface in the flat Rindler spacetime associated with an accelerated observer. In this paper, we show that the shear viscosity to entropy density ratio of the fluid takes the universal value 1/4\pi in a wide class of higher curvature generalizations to Einstein gravity. Unlike the fluid dual to asymptotically anti-de Sitter spacetimes, here the choice of gravitational dynamics only affects the second order transport coefficients. We explicitly calculate these in five-dimensional Einstein-Gauss-Bonnet gravity and discuss the implications of our results.Comment: 13 pages; v2: modified abstract, added references; v3: added clarifying comments, modified discussio

    Mechanics of universal horizons

    Full text link
    Modified gravity models such as Ho\v{r}ava-Lifshitz gravity or Einstein-{\ae}ther theory violate local Lorentz invariance and therefore destroy the notion of a universal light cone. Despite this, in the infrared limit both models above possess static, spherically symmetric solutions with "universal horizons" - hypersurfaces that are causal boundaries between an interior region and asymptotic spatial infinity. In other words, there still exist black hole solutions. We construct a Smarr formula (the relationship between the total energy of the spacetime and the area of the horizon) for such a horizon in Einstein-{\ae}ther theory. We further show that a slightly modified first law of black hole mechanics still holds with the relevant area now a cross-section of the universal horizon. We construct new analytic solutions for certain Einstein-{\ae}ther Lagrangians and illustrate how our results work in these exact cases. Our results suggest that holography may be extended to these theories despite the very different causal structure as long as the universal horizon remains the unique causal boundary when matter fields are added.Comment: Minor clarifications. References update

    Penerapan Model Pembelajaran Aktif Inquiring Minds Want to Know Guna Meningkatkan Prestasi Belajar Akuntansi Pad Siswa Kelas X Akuntansi Smk Murni 2 Surakarta Tahun Ajaran 2012/2013

    Full text link
    The objective of research was to find out whether or not there is an improvement of Accounting learning achievement through inquiring minds want to know type of active learning model in the X Accounting graders of SMK Murni 2 Surakarta in the school year of 2012/2013. This study employed a Classroom Action Research (CAR). The subject of research was the X Accounting graders of SMK Murni 2 Surakarta consisting of 21 students. The result of research showed the increased percentage of affective, psychomotor, and cognitive ability levels among the students. The mean percentage affective level was 69.29% in cycle I and 78.10% in cycle II, increasing by 8.81%. The mean percentage of psychomotor ability was 70.24% in cycle I and 77.38% in cycle II, increasing by 7.14%. The mean percentage of cognitive ability was 69.42% in cycle I and 77.90% in cycle II, increasing by 8.48%. Considering the research conducted, it could be concluded that the inquiring minds want to know type of active learning model use could improve the accounting learning achievement (either process or product). It was reflected on several indicators of student ability assessment improving in each cycle

    Preferred foliation effects in Quantum General Relativity

    Full text link
    We investigate the infrared (IR) effects of Lorentz violating terms in the gravitational sector using functional renormalization group methods similar to Reuter and collaborators. The model we consider consists of pure quantum gravity coupled to a preferred foliation, described effectively via a scalar field with non-standard dynamics. We find that vanishing Lorentz violation is a UV attractive fixed-point of this model in the local potential approximation. Since larger truncations may lead to differing results, we study as a first example effects of additional matter fields on the RG running of the Lorentz violating term and provide a general argument why they are small.Comment: 12 pages, no figures, compatible with published versio

    Quantum vacuum fluctuations and dark energy

    Full text link
    It is shown that the curvature of space-time induced by vacuum fluctuations of quantum fields should be proportional to the square of Newton's constant GG. This offers a possible explanation for the success of the approximation Gm6c2h−4G m^6 c^2 h^{-4} for the dark energy density, with mm being a typical mass of elementary particles.Comment: Changed conten

    Can MONDian vector theories explain the cosmic speed up ?

    Full text link
    Generalized Einstein - Aether vector field models have been shown to provide, in the weak field regime, modifications to gravity which can be reconciled with the successfull MOND proposal. Very little is known, however, on the function F(K) defining the vector field Lagrangian so that an analysis of the viability of such theories at the cosmological scales has never been performed. As a first step along this route, we rely on the relation between F(K) and the MOND interpolating function μ(a/a0)\mu(a/a_0) to assign the vector field Lagrangian thus obtaining what we refer to as "MONDian vector models". Since they are able by construction to recover the MOND successes on galaxy scales, we investigate whether they can also drive the observed accelerated expansion by fitting the models to the Type Ia Supernovae data. Should be this the case, we have a unified framework where both dark energy and dark matter can be seen as different manifestations of a single vector field. It turns out that both MONDian vector models are able to well fit the low redshift data on Type Ia Supernovae, while some tension could be present in the high z regime.Comment: 15 pages, 5 tables, 4 figures, accepted for publication on Physical Review
    • …
    corecore