1,272 research outputs found

    The contribution of starbursts and normal galaxies to infrared luminosity functions at z < 2

    Get PDF
    We present a parameter-less approach to predict the shape of the infrared (IR) luminosity function (LF) at redshifts z < 2. It requires no tuning and relies on only three observables: (1) the redshift evolution of the stellar mass function for star-forming galaxies, (2) the evolution of the specific star formation rate (sSFR) of main-sequence galaxies, and (3) the double-Gaussian decomposition of the sSFR-distribution at fixed stellar mass into a contribution (assumed redshift- and mass-invariant) from main-sequence and starburst activity. This self-consistent and simple framework provides a powerful tool for predicting cosmological observables: observed IR LFs are successfully matched at all z < 2, suggesting a constant or only weakly redshift-dependent contribution (8-14%) of starbursts to the star formation rate density. We separate the contributions of main-sequence and starburst activity to the global IR LF at all redshifts. The luminosity threshold above which the starburst component dominates the IR LF rises from log(LIR/Lsun) = 11.4 to 12.8 over 0 < z < 2, reflecting our assumed (1+z)^2.8-evolution of sSFR in main-sequence galaxies.Comment: 7 pages, 4 figures & 1 table. Accepted for publication in ApJL. Minor typos corrected in v2 following receipt of proof

    Spitzer 70 Micron Source Counts in GOODS-North

    Get PDF
    We present ultradeep Spitzer 70 μm observations of GOODS-North (Great Observatories Origins Deep Survey). For the first time, the turnover in the 70 μm Euclidean-normalized differential source counts is observed. We derive source counts down to a flux density of 1.2 mJy. From the measured source counts and fluctuation analysis, we estimate a power-law approximation of the faint 70 μm source counts of dN/dS ∝ S^−1.6, consistent with that observed for the faint 24 μm sources. An extrapolation of the 70 μm source counts to zero flux density implies a total extragalactic background light (EBL) of 7.4 ± 1.9 nW m^−2 sr^−1. The source counts above 1.2 mJy account for about 60% of the estimated EBL. From fluctuation analysis, we derive a photometric confusion level of σc = 0.30 ± 0.15 mJy (q = 5) for the Spitzer 70 μm band

    Simple quantum cosmology: Vacuum energy and initial state

    Full text link
    A static non-singular 10-dimensional closed Friedmann universe of Planck size, filled with a perfect fluid with an equation of state with w = -2/3, can arise spontaneously by a quantum fluctuation from nothing in 11-dimensional spacetime. A quantum transition from this state can initiate the inflationary quantum cosmology outlined in Ref. 2 [General Relativity and Gravitation 33, 1415, 2001 - gr-qc/0103021]. With no fine-tuning, that cosmology predicts about 60 e-folds of inflation and a vacuum energy density depending only on the number of extra space dimensions (seven), G, h, c and the ratio between the strength of gravity and the strength of the strong force. The fraction of the total energy in the universe represented by this vacuum energy depends on the Hubble constant. Hubble constant estimates from WMAP, SDSS, the Hubble Key Project and Sunyaev-Zeldovich and X-ray flux measurements range from 60 to 72 km/(Mpc sec). With a mid-range Hubble constant of 65 km/(Mpc sec), the model in Ref. 2 predicts Omega-sub-Lambda = 0.7Comment: To be published in General Relativity and Gravitation, Vol. 37, May 2005. 5 pages, no figure

    The contribution of starbursts and normal galaxies to IR luminosity functions and the molecular gas content of the Universe at z<2

    Get PDF
    We present a parameter-less approach capable of predicting the shape of the infrared luminosity function at redshifts z ≤2. It relies on three observables: (1) the redshift evolution of the stellar mass function for star-forming galaxies, (2) the evolution of the specific star formation rate of main-sequence galaxies, and (3) the double-Gaussian decomposition of the specific star formation rate distribution at fixed stellar mass into the contributions (assumed to be redshift- and mass-invariant) from main-sequence and starburst activity. Using this self-consistent and simple framework, we identify the contributions of main-sequence and starburst activity to the global infrared luminosity function and find a constant or only weakly redshift-dependent contribution (8–14%) of starbursts to the star formation rate density at z ≤2. Over the same redshift range, we also infer the evolution of the cosmic abundance of molecular gas in star-forming galaxies, based on the relations between star formation rate and molecular gas mass followed by normal and starburst galaxies

    T-PHOT version 2.0: improved algorithms for background subtraction, local convolution, kernel registration, and new options

    Full text link
    We present the new release v2.0 of T-PHOT, a publicly available software package developed to perform PSF-matched, prior-based, multiwavelength deconfusion photometry of extragalactic fields. New features included in the code are presented and discussed: background estimation, fitting using position dependent kernels, flux prioring, diagnostical statistics on the residual image, exclusion of selected sources from the model and residual images, individual registration of fitted objects. These new options improve on the performance of the code, allowing for more accurate results and providing useful aids for diagnostics.Comment: 7 pages, 8 figure

    A simple quantum cosmology

    Get PDF
    A simple and surprisingly realistic model of the origin of the universe can be developed using the Friedmann equation from general relativity, elementary quantum mechanics, and the experimental values of h, c, G and the proton mass. The model assumes there are N space dimensions (with N > 6) and the potential constraining the radius r of the invisible N -3 compact dimensions varies as r^4. In this model, the universe has zero total energy and is created from nothing. There is no initial singularity. If space-time is eleven dimensional, as required by M theory, the scalar field corresponding to the size of the compact dimensions inflates the universe by about 26 orders of magnitude (60 e-folds). If the Hubble constant is 65 km/sec Mpc, the energy density of the scalar field after inflation results in Omega-sub-Lambda = 0.68, in agreement with recent astrophysical observations.Comment: To be published in General Relativity and Gravitation, August 200

    Hierarchy and Wave Functions in a Simple Quantum Cosmology

    Full text link
    Astrophysical observations indicate the expansion of the universe is accelerating. Applying the holographic entropy conjecture to the cosmological horizon in an accelerating universe suggests the universe has only a finite number of degrees of freedom. This is consistent with a closed universe arising from a quantum fluctuation, with zero total quantum numbers. If space-time has eleven dimensions, and the universe began as a closed force-symmetric ten-dimensional space with characteristic dimension L, seven of the space dimensions must have collapsed to generate the three large space dimensions we see. The holographic conjecture then suggests the initial length scale L must be roughly twenty orders of magnitude larger than the Planck length. Accordingly, the nuclear force must be roughly forty orders of magnitude stronger than gravity, possibly resolving the force hierarchy problem. A wavefunction for the radius of curvature of the universe can be obtained from the Schrodinger equation derived by Elbaz and Novello. The product of this wavefunction and its complex conjugate can be interpreted as the probability density for finding a given radius of curvature in one of the infinity of measurements of the radius of curvature possible (in principle) at any location in a homogeneous isotropic universe.Comment: 4 pages, no figures, abstract corrected to insert omitted word
    corecore