1,568 research outputs found
Constraints on string networks with junctions
We consider the constraints on string networks with junctions in which the
strings may all be different, as may be found for example in a network of
cosmic superstrings. We concentrate on three aspects of junction
dynamics. First we consider the propagation of small amplitude waves across a
static three-string junction. Then, generalizing our earlier work, we determine
the kinematic constraints on two colliding strings with different tensions. As
before, the important conclusion is that strings do not always reconnect with a
third string; they can pass straight through one another (or in the case of
non-abelian strings become stuck in an X configuration), the constraint
depending on the angle at which the strings meet, on their relative velocity,
and on the ratios of the string tensions. For example, if the two colliding
strings have equal tensions, then for ultra-relativistic initial velocities
they pass through one another. However, if their tensions are sufficiently
different they can reconnect. Finally, we consider the global properties of
junctions and strings in a network. Assuming that, in a network, the incoming
waves at a junction are independently randomly distributed, we determine the
r.m.s. velocities of strings and calculate the average speed at which a
junction moves along each of the three strings from which it is formed. Our
findings suggest that junction dynamics may be such as to preferentially remove
the heavy strings from the network leaving a network of predominantly light
strings. Furthermore the r.m.s. velocity of strings in a network with junctions
is smaller than 1/\sqrt{2}, the result for conventional Nambu-Goto strings
without junctions in Minkowski spacetime.Comment: 12 pages, 6 figures. Version to appear in PRD. (2 new references and
slightly extended discussion in section VII
Collisions of strings with Y junctions
We study the dynamics of Nambu--Goto strings with junctions at which three
strings meet. In particular, we exhibit one simple exact solution and examine
the process of intercommuting of two straight strings, in which they exchange
partners but become joined by a third string. We show that there are important
kinematical constraints on this process. The exchange cannot occur if the
strings meet with very large relative velocity. This may have important
implications for the evolution of cosmic superstring networks and non-abelian
string networks.Comment: 4 pages, 1 figure, uses revtex 4. Clarifying comments added to
correct a conceptual error, reference updated. Version accepted by Phys Rev
Letters, with additional references and minor change
Kinematic Constraints on Formation of Bound States of Cosmic Strings - Field Theoretical Approach
Superstring theory predicts the potential formation of string networks with
bound states ending in junctions. Kinematic constraints for junction formation
have been derived within the Nambu-Goto thin string approximation. Here we test
these constraints numerically in the framework of the Abelian-Higgs model in
the Type-I regime and report on good agreement with the analytical predictions.
We also demonstrate that strings can effectively pass through each other when
they meet at speeds slightly above the critical velocity permitting bound state
formation. This is due to reconnection effects that are beyond the scope of the
Nambu-Goto approximation.Comment: 6 pages, 12 eps figures - matches the published versio
Optimal Image Reconstruction in Radio Interferometry
We introduce a method for analyzing radio interferometry data which produces
maps which are optimal in the Bayesian sense of maximum posterior probability
density, given certain prior assumptions. It is similar to maximum entropy
techniques, but with an exact accounting of the multiplicity instead of the
usual approximation involving Stirling's formula. It also incorporates an Occam
factor, automatically limiting the effective amount of detail in the map to
that justified by the data. We use Gibbs sampling to determine, to any desired
degree of accuracy, the multi-dimensional posterior density distribution. From
this we can construct a mean posterior map and other measures of the posterior
density, including confidence limits on any well-defined function of the
posterior map.Comment: 41 pages, 11 figures. High resolution figures 8 and 9 available at
http://www.astro.uiuc.edu/~bwandelt/SuttonWandelt200
High-Resolution, Wide-Field Imaging of the Galactic Center Region at 330 MHz
We present a wide field, sub-arcminute resolution VLA image of the Galactic
Center region at 330 MHz. With a resolution of ~ 7" X 12" and an RMS noise of
1.6 mJy/beam, this image represents a significant increase in resolution and
sensitivity over the previously published VLA image at this frequency. The
improved sensitivity has more than tripled the census of small diameter sources
in the region, has resulted in the detection of two new Non Thermal Filaments
(NTFs), 18 NTF candidates, 30 pulsar candidates, reveals previously known
extended sources in greater detail, and has resulted in the first detection of
Sagittarius A* in this frequency range.
A version of this paper containing full resolution images may be found at
http://lwa.nrl.navy.mil/nord/AAAB.pdf.Comment: Astronomical Journal, Accepted 62 Pages, 21 Figure
- …