523 research outputs found

    40 Years of CSF Toxicity Studies in ALS: What Have We Learnt About ALS Pathophysiology?

    Get PDF
    AM is a Lady Edith Wolfson Clinical Fellow and is jointly funded by the Medical Research Council (MRC) and the Motor Neurone Disease Association (MR/R001162/1). He also acknowledges support from the Rowling Scholars scheme, administered by the Anne Rowling Regenerative Neurology Clinic (ARRNC), University of Edinburgh, and a seedcorn grant from The Chief Scientist Office and the RS Macdonald Charitable Trust via the Scottish Neurological Research Fund, administered by the University of St Andrews. The Hardingham and Chandran laboratories are supported by the Euan MacDonald Centre for Motor Neurone Disease Research, and the UK Dementia Research Institute (DRI), which receives its funding from UK DRI Ltd., funded by the MRC, Alzheimerā€™s Society and Alzheimerā€™s Research UK.Peer reviewedPublisher PD

    Differential cartilaginous tissue formation by human synovial membrane, fat pad, meniscus cells and articular chondrocytes

    Get PDF
    Objective: To identify an appropriate cell source for the generation of meniscus substitutes, among those which would be available by arthroscopy of injured knee joints. Methods: Human inner meniscus cells, fat pad cells (FPC), synovial membrane cells (SMC) and articular chondrocytes (AC) were expanded with or without specific growth factors (Transforming growth factor-betal, Fibroblast growth factor-2 and Plate let-derived growth factor bb, TFP) and then induced to form three-dimensional cartilaginous tissues in pellet cultures, or using a hyaluronan-based scaffold (Hyaff(R)-11), in culture or in nude mice. Human native menisci were assessed as reference. Results: Cell expansion with TFP enhanced glycosaminoglycan (GAG) deposition by all cell types (up to 4.1-fold) and messenger RNA expression of collagen type II by FPC and SMC (up to 472-fold) following pellet culture. In all models, tissues generated by AC contained the highest fractions of GAG (up to 1.9 were positively stained for collagen type II (specific of the inner avascular region of meniscus), type IV (mainly present in the outer vascularized region of meniscus) and types I, III and VI (common to both meniscus regions). Instead, inner meniscus, FPC and SMC developed tissues containing negligible GAG and no detectable collagen type II protein. Tissues generated by AC remained biochemically and phenotypically stable upon ectopic implantation. Conclusions: Under our experimental conditions, only AC generated tissues containing relevant amounts of GAG and with cell phenotypes compatible with those of the inner and outer meniscus regions. Instead, the other investigated cell sources formed tissues resembling only the outer region of meniscus. It remains to be determined whether grafts based on AC will have the ability to reach the complex structural and functional organization typical of meniscus tissue. (C) 2006 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights rese

    Mitochondrial bioenergetic deficits in C9orf72 amyotrophic lateral sclerosis motor neurons cause dysfunctional axonal homeostasis

    Get PDF
    ARM is a Lady Edith Wolfson Clinical Fellow and is jointly funded by the Medical Research Council (MRC) and the Motor Neurone Disease Association (MR/R001162/1). He also acknowledges support from the Rowling Scholars scheme, administered by the Anne Rowling Regenerative Neurology Clinic (ARRNC), University of Edinburgh, and a seedcorn grant from The Chief Scientist Office and the RS Macdonald Charitable Trust via the Scottish Neurological Research Fund, administered by the University of St Andrews. JMG is funded by a starter grant for clinical lecturers from the Academy of Medical Sciences. CS is supported by a Medical Research Council grant (MR/L016400/1). NMM was funded by a Wellcome Trust New Investigator Award (100981/Z/13/Z). RNC and NMM are funded by a Diabetes UK grant (17/0005697). The Hardingham and Chandran laboratories are supported by the Euan MacDonald Centre for Motor Neurone Disease Research, and the UK Dementia Research Institute (DRI), which receives its funding from UK DRI Ltd, funded by the MRC, Alzheimer's Society and Alzheimer's Research UK. SC also acknowledges funding from the ARRNC, My Nameā€™5 Doddie Foundation, and an MRC Dementias Platform UK Stem Cell Partnership grant (MR/N013255/1). BTS is a Rowling-DRI Fellow.Peer reviewedPublisher PD
    • ā€¦
    corecore