30 research outputs found

    Neurocardiac risk stratification 6 hours after resuscitation from cardiac arrest

    Get PDF
    Introduction: • An increasing number of patients are resuscitated from out-ofhospital cardiac arrest. Triage to optimal treatment pathways could improve and increase the efficacy of post-resuscition care. • Despite great variability in etiology, duration, and patterns of injury from cardiac arrest, post-resuscitation treatment guidelines emphasize standard treatments. We hypothesize that by categorizing competing risks very early after resuscitation, it may be possible to improve the efficacy and efficiency of care. • When measured very early after resuscitation, suppression ratio (SR, the percentage of suppressed EEG), correlates with severity of brain injury and the likelihood of poor neurological outcome. • The CREST score2 is a validated model to predict circulatoryetiology death (CED) based on: Coronary artery disease, initial nonshockable Rhythm, Ejection fraction25 minutes

    Tissue engineering for the diaphragm and its various therapeutic possibilities - a systematic review

    Get PDF
    Diaphragmatic impairments exhibit high morbidity as well as mortality while current treatment options remain unsatisfactory. Tissue engineering (TE) approaches have explored the generation of an optimal biocompatible scaffold for diaphragmatic repair through tissue decellularization or de novo construction, with or without the addition of cells. We conducted a systematic review on the current state of the art in diaphragmatic tissue engineering (DTE) and found 24 articles eligible for final synthesis. The included approaches studied decellularization-based graft generation (9) and de novo bioscaffold construction (9). Three studies focused on in vitro host-scaffold interaction with synthesized, recellularized grafts (2) and decellularized extracellular matrix scaffolds (1). Another three studies investigated evaluation tools for decellularization efficacy. Among all studies, recellularization was performed in both decellularization-based (4) and de novo generated scaffolds (4). De novo constructed biocomposites as well as decellularized and recellularized scaffolds induced pro-regenerative remodeling and recovery of diaphragmatic function in all examined animal models. Potential therapeutic applications comprise substance defects requiring patch repair, such as congenital diaphragmatic hernia, and functional diseases demanding an entire organ transplant, like muscular dystrophies or dysfunction after prolonged artificial respiration

    The single-cell transcriptional landscape of lung carcinoid tumors

    Get PDF
    Lung carcinoid tumors, also referred to as pulmonary neuroendocrine tumors or lung carcinoids, are rare neoplasms of the lung with a more favorable prognosis than other subtypes of lung cancer. Still, some patients suffer from relapsed disease and metastatic spread. Several recent single-cell studies have provided detailed insights into the cellular heterogeneity of more common lung cancers, such as adeno- and squamous cell carcinoma. However, the characteristics of lung carcinoids on the single-cell level are yet completely unknown. To study the cellular composition and single-cell gene expression profiles in lung carcinoids, we applied single-cell RNA sequencing to three lung carcinoid tumor samples and normal lung tissue. The single-cell transcriptomes of carcinoid tumor cells reflected intertumoral heterogeneity associated with clinicopathological features, such as tumor necrosis and proliferation index. The immune microenvironment was specifically enriched in non-inflammatory monocyte-derived myeloid cells. Tumor-associated endothelial cells were characterized by distinct gene expression profiles. A spectrum of vascular smooth muscle cells and pericytes predominated the stromal microenvironment. We found a small proportion of myofibroblasts exhibiting features reminiscent of cancer-associated fibroblasts. Stromal and immune cells exhibited potential paracrine interactions which may shape the microenvironment via NOTCH, VEGF, TGFβ and JAK/STAT signaling. Moreover, single-cell gene signatures of pericytes and myofibroblasts demonstrated prognostic value in bulk gene expression data. Here, we provide first comprehensive insights into the cellular composition and single-cell gene expression profiles in lung carcinoids, demonstrating the non-inflammatory and vessel-rich nature of their tumor microenvironment, and outlining relevant intercellular interactions which could serve as future therapeutic targets

    Single-cell RNA sequencing reveals distinct tumor microenvironmental patterns in lung adenocarcinoma

    Get PDF
    Recent developments in immuno-oncology demonstrate that not only cancer cells, but also the tumor microenvironment can guide precision medicine. A comprehensive and in-depth characterization of the tumor microenvironment is challenging since its cell populations are diverse and can be important even if scarce. To identify clinically relevant microenvironmental and cancer features, we applied single-cell RNA sequencing to ten human lung adenocarcinomas and ten normal control tissues. Our analyses revealed heterogeneous carcinoma cell transcriptomes reflecting histological grade and oncogenic pathway activities, and two distinct microenvironmental patterns. The immune-activated CP(2)E microenvironment was composed of cancer-associated myofibroblasts, proinflammatory monocyte-derived macrophages, plasmacytoid dendritic cells and exhausted CD8+ T cells, and was prognostically unfavorable. In contrast, the inert N(3)MC microenvironment was characterized by normal-like myofibroblasts, non-inflammatory monocyte-derived macrophages, NK cells, myeloid dendritic cells and conventional T cells, and was associated with a favorable prognosis. Microenvironmental marker genes and signatures identified in single-cell profiles had progonostic value in bulk tumor profiles. In summary, single-cell RNA profiling of lung adenocarcinoma provides additional prognostic information based on the microenvironment, and may help to predict therapy response and to reveal possible target cell populations for future therapeutic approaches

    Experimental model of acute aortic rupture with porcine aortas

    No full text
    corecore