162 research outputs found

    Selective decrease of mRNAs encoding plasma membrane calcium pump isoforms 2 and 3 in rat kidney

    Get PDF
    Selective decrease of mRNAs encoding plasma membrane calcium pump isoforms 2 and 3 in rat kidney.BackgroundAlthough the existence of multiple isoforms of plasma membrane calcium ATPase (PMCA) is now well documented, their biological functions are not yet known. In this study, we set out to investigate the potential role of PMCA isoforms, previously identified in renal cortical tissue, in tubular reabsorption of calcium (Ca2+).MethodsWith use of reverse transcription-polymerase chain reaction analysis, we determined levels of mRNAs encoding isoforms of PMCA1 through PMCA4 in renal cortex, liver, and brain of rats with hypercalciuria induced by feeding with a low-phosphate diet (LPD) as compared with Ca2+-retaining rats that were fed a high-phosphate diet (HPD).ResultsWe observed that in hypercalciuric LPD-fed rats, the mRNAs encoding isoforms PMCA2b and PMCA3(a + c) are significantly lower (Ξ” approximately -50%) than in HPD-fed hypocalciuric rats, whereas no changes in mRNAs encoding isoforms PMCA1b and PMCA4 were observed, and mRNA encoding calbindin 28 kDa was increased. On the other hand, the content of mRNAs encoding PMCA2b and PMCA3(a + c) in liver and brain, respectively, was not changed.ConclusionThese findings are evidence that expression of PMCA isoforms in the kidney can be selectively modulated in response to pathophysiologic stimuli. The association of a decrease in mRNA encoding PMCA2b and PMCA3(a + c) with hypercalciuria suggests that the two PMCA isoforms may be operant in tubular reabsorption of Ca2+ and its regulation

    A Biphasic and Brain-Region Selective Down-Regulation of Cyclic Adenosine Monophosphate Concentrations Supports Object Recognition in the Rat

    Get PDF
    Background: We aimed to further understand the relationship between cAMP concentration and mnesic performance. Methods and Findings: Rats were injected with milrinone (PDE3 inhibitor, 0.3 mg/kg, i.p.), rolipram (PDE4 inhibitor, 0.3 mg/ kg, i.p.) and/or the selective 5-HT4R agonist RS 67333 (1 mg/kg, i.p.) before testing in the object recognition paradigm. Cyclic AMP concentrations were measured in brain structures linked to episodic-like memory (i.e. hippocampus, prefrontal and perirhinal cortices) before or after either the sample or the testing phase. Except in the hippocampus of rolipram treated-rats, all treatment increased cAMP levels in each brain sub-region studied before the sample phase. After the sample phase, cAMP levels were significantly increased in hippocampus (1.8 fold), prefrontal (1.3 fold) and perirhinal (1.3 fold) cortices from controls rat while decreased in prefrontal cortex (,0.83 to 0.62 fold) from drug-treated rats (except for milrinone+RS 67333 treatment). After the testing phase, cAMP concentrations were still increased in both the hippocampus (2.76 fold) and the perirhinal cortex (2.1 fold) from controls animals. Minor increase were reported in hippocampus and perirhinal cortex from both rolipram (respectively, 1.44 fold and 1.70 fold) and milrinone (respectively 1.46 fold and 1.56 fold)-treated rat. Following the paradigm, cAMP levels were significantly lower in the hippocampus, prefrontal and perirhinal cortices from drug-treated rat when compared to controls animals, however, only drug-treated rats spent longer time exploring the novel object during the testing phase (inter-phase interval of 4 h)

    Physiology and pathophysiology of the vasopressin-regulated renal water reabsorption

    Get PDF
    To prevent dehydration, terrestrial animals and humans have developed a sensitive and versatile system to maintain their water homeostasis. In states of hypernatremia or hypovolemia, the antidiuretic hormone vasopressin (AVP) is released from the pituitary and binds its type-2 receptor in renal principal cells. This triggers an intracellular cAMP signaling cascade, which phosphorylates aquaporin-2 (AQP2) and targets the channel to the apical plasma membrane. Driven by an osmotic gradient, pro-urinary water then passes the membrane through AQP2 and leaves the cell on the basolateral side via AQP3 and AQP4 water channels. When water homeostasis is restored, AVP levels decline, and AQP2 is internalized from the plasma membrane, leaving the plasma membrane watertight again. The action of AVP is counterbalanced by several hormones like prostaglandin E2, bradykinin, dopamine, endothelin-1, acetylcholine, epidermal growth factor, and purines. Moreover, AQP2 is strongly involved in the pathophysiology of disorders characterized by renal concentrating defects, as well as conditions associated with severe water retention. This review focuses on our recent increase in understanding of the molecular mechanisms underlying AVP-regulated renal water transport in both health and disease

    Evidences for the existence of endothelium-derived relaxing factor in the renal medulla

    No full text
    The basal levels of cGMP in renal medulla slices were enhanced when the slices were stimulated with both endothelium-dependent (acetylcholine) and endothelium-independent (molsidomine) vasodilators. When preincubated with N(G)-monomethyl-L-arginine, a specific inhibitor of endothelium-derived relaxing factor, only the acetylcholine-stimulated increase was completely abolished. Furthermore, a preincubation with L-arginine, a selective precursor of endothelium-derived relaxing factor, enhanced the cGMP levels. The results indicate that the renal medulla, presumably the endothelial cells of the vasa recta, is able to produce endothelium-derived relaxing factor.link_to_subscribed_fulltex
    • …
    corecore