7,180 research outputs found

    Ionospheric E-region Irregularities Produced by Non-linear Coupling of Unstable Plasma Waves

    Get PDF
    Ionospheric E region irregularities produced by nonlinear coupling of unstable plasma wave

    Radio emission from the massive stars in the Galactic Super Star Cluster Westerlund 1

    Get PDF
    Current mass-loss rate estimates imply that main sequence winds are not sufficient to strip away the H-rich envelope to yield Wolf-Rayet (WR) stars. The rich transitional population of Westerlund 1 (Wd 1) provides an ideal laboratory to observe mass-loss processes throughout the transitional phase of stellar evolution. An analysis of deep radio continuum observations of Wd 1 is presented. We detect 18 cluster members. The radio properties of the sample are diverse, with thermal, non-thermal and composite thermal/non-thermal sources present. Mass-loss rates are ~10^{-5} solar mass/year across all spectral types, insufficient to form WRs during a massive star lifetime, and the stars must undergo a period of enhanced mass loss. The sgB[e] star W9 may provide an example, with a mass-loss rate an order of magnitude higher than the other cluster members, and an extended nebula of density ~3 times the current wind. This structure is reminiscent of luminous blue variables, and one with evidence of two eras of high, possibly eruptive, mass loss. Three OB supergiants are detected, implying unusually dense winds. They also may have composite spectra, suggesting binarity. Spatially resolved nebulae are associated with three of the four RSGs and three of the six YHGs in the cluster, which are due to quiescent mass loss rather than outbursts. For some of the cool star winds, the ionizing source may be a companion star though the cluster radiation density is sufficiently high to provide the necessary ionizing radiation. Five WR stars are detected with composite spectra, interpreted as arising in colliding-wind binaries.Comment: 15 pages, 6 figures. Accepted for publication in Astronomy and Astrophysic

    Higher Weights of Codes from Projective Planes and Biplanes

    Get PDF
    We study the higher weights of codes formed from planes and biplanes. We relate the higher weights of the Hull and the code of a plane and biplane. We determine all higher weight enumerators of planes and biplanes of order less or equal to 4.</p

    Radio emission from the massive stars in Westerlund 1

    No full text
    The diverse massive stellar population in the young massive clusterWesterlund 1 (Wd 1) provides an ideal laboratory to observe and constrain mass-loss processes throughout the transitional phase of massive star evolution. A set of high sensitivity radio observations of Wd 1 leads to the detection of 18 cluster members, a sample dominated by cool hypergiants, but with detections among hotter OB supergiants and WR stars. Here the diverse radio properties of the detected sample are briefly described. The mass-loss rates of the detected objects are surprisingly similar across the whole transitional phase of massive star evolution, at ~ 10-5 Mo yr−1. Such a rate is insufficient to strip away the H-rich mantle in a massive star lifetime, unless the stars go through a period of enhanced mass-loss. The radio luminous star W9 provides an example of such an object, with evidence for two eras of mass-loss with rates of ~ 10−4 Mo yr−1

    Dendritic side-branching with anisotropic viscous fingering

    Full text link
    We studied dendritic side-branching mechanism in the experiment of anisotropic viscous fingering. We measured the time dependence of growth speed of side-branch and the envelop of side-branches. We found that the speed of side-branch gets to be faster than one of the stem and the growth exponent of the speed changes at a certain time. The envelope of side-branches is represented as Y ~ X^1.47.Comment: 8 pages, 8 figures, to submited in J. Crystal Growt

    Locating and Quantifying Broadband Fan Sources Using In-Duct Microphones

    Get PDF
    In-duct beamforming techniques have been developed for locating broadband noise sources on a low-speed fan and quantifying the acoustic power in the inlet and aft fan ducts. The NASA Glenn Research Center's Advanced Noise Control Fan was used as a test bed. Several of the blades were modified to provide a broadband source to evaluate the efficacy of the in-duct beamforming technique. Phased arrays consisting of rings and line arrays of microphones were employed. For the imaging, the data were mathematically resampled in the frame of reference of the rotating fan. For both the imaging and power measurement steps, array steering vectors were computed using annular duct modal expansions, selected subsets of the cross spectral matrix elements were used, and the DAMAS and CLEAN-SC deconvolution algorithms were applied
    corecore