101 research outputs found

    Maxwell's Refrigerator: An Exactly Solvable Model

    Full text link
    We describe a simple and solvable model of a device that -- like the "neat-fingered being" in Maxwell's famous thought experiment -- transfers energy from a cold system to a hot system by rectifying thermal fluctuations. In order to accomplish this task, our device requires a memory register to which it can write information: the increase in the Shannon entropy of the memory compensates the decrease in the thermodynamic entropy arising from the flow of heat against a thermal gradient. We construct the nonequilibrium phase diagram for this device, and find that it can alternatively act as an eraser of information. We discuss our model in the context of the second law of thermodynamics.Comment: 9 pages (Main Text + Supplemental Material), 3 figures, to appear in Physical Review Letter

    Nature of the spiral state, electric polarisation and magnetic transitions in Sr-doped YBaCuFeO5_5: A first-principles study

    Full text link
    Contradictory results on the ferroelectric response of type II multiferroic YBaCuFeO5_{5}, in its incommensurate phase, has of late, opened up a lively debate. There are ambiguous reports on the nature of the spiral magnetic state. Using first-principles DFT calculations for the parent compound within LSDA+U+SO approximation, the multiferroic response and the nature of spiral state is revealed. The helical spiral is found to be more stable below the transition temperature as spins prefer to lie in ab plane. The Dzyaloshinskii-Moriya (DM) interaction and the spin current mechanism were earlier invoked to account for the electric polarisation in this system. However, the DM interaction is found to be absent, spin current mechanism is not valid in the helical spiral state and there is no electric polarisation thereof. These results are in good agreement with the recent single-crystal data. We also investigate the magnetic transitions in YBa1x_{1-x}Srx_xCuFeO5_5 for the entire range 0x10\le x\le 1 of doping. The exchange interactions are estimated as a function of doping and a quantum Monte Carlo (QMC) calculation on an effective spin Hamiltonian shows that the paramagnetic to commensurate phase transition temperature increases with doping till x=0.5x=0.5 and decreases beyond. Our observations are consistent with experimental findings.Comment: 8 pages, 7 figure

    First-Principles Correlated Approach to the Normal State of Strontium Ruthenate

    Full text link
    The interplay between multiple bands, sizable multi-band electronic correlations and strong spin-orbit coupling may conspire in selecting a rather unusual unconventional pairing symmetry in layered Sr2_{2}RuO4_{4}. This mandates a detailed revisit of the normal state and, in particular, the TT-dependent incoherence-coherence crossover. Using a modern first-principles correlated view, we study this issue in the actual structure of Sr2_{2}RuO4_{4} and present a unified and quantitative description of a range of unusual physical responses in the normal state. Armed with these, we propose that a new and important element, that of dominant multi-orbital charge fluctuations in a Hund's metal, may be a primary pair glue for unconventional superconductivity. Thereby we establish a connection between the normal state responses and superconductivity in this system.Comment: 8 pages, 4 figure

    Heat transport through an open coupled scalar field theory hosting stability-to-instability transition

    Full text link
    We investigate heat transport through a one-dimensional open coupled scalar field theory, depicted as a network of harmonic oscillators connected to thermal baths at the boundaries. The non-Hermitian dynamical matrix of the network undergoes a stability-to-instability transition at the exceptional points as the coupling strength between the scalar fields increases. The open network in the unstable regime, marked by the emergence of inverted oscillator modes, does not acquire a steady state, and the heat conduction is then unbounded for general bath couplings. In this work, we engineer a unique bath coupling where a single bath is connected to two fields at each edge with the same strength. This configuration leads to a finite steady-state heat conduction in the network, even in the unstable regime. We also study general bath couplings, e.g., connecting two fields to two separate baths at each boundary, which shows an exciting signature of approaching the unstable regime for massive fields. We derive analytical expressions for high-temperature classical heat current through the network for different bath couplings at the edges and compare them. Furthermore, we determine the temperature dependence of low-temperature quantum heat current in different cases. Our study will help to probe topological phases and phase transitions in various quadratic Hermitian bosonic models whose dynamical matrices resemble non-Hermitian Hamiltonians, hosting exciting topological phases.Comment: 19 pages, 4 figure

    Possible routes to superconductivity in the surface layers of V-doped Mg1δ_{1-\delta}Ti2_2O4_4 through multiple charge transfers and suppression of Jahn-Teller activity

    Full text link
    Superconductivity in the family of spinel oxides is very rare owing to their robust Mott-insulating nature. About half a century ago, LiTi2_2O4_4 became the first reported spinel compound to show superconductivity with a 12K transition temperature. Since then, several unsuccessful attempts were made to enhance the Tc_c of this family of materials. However, a very recent experiment [arXiv:2209.02053] has reported superconductivity at a higher temperature (below 16K), in the V-doped Mg1δ_{1-\delta}Ti2_2O4_4 thin surface layer while its bulk counterpart remains Mott insulating. The superconducting Tc_c of this material is significantly higher compared to other engineered MgTi2_2O4_4 thin films grown on different substrates. From our first-principles analysis, we have identified that Mg-depletion significantly reduces Jahn-Teller (JT) activity and antiferromagnetic superexchange at the surface layer of V-doped MgTi2_2O4_4 due to considerable charge transfer between various ions. The combined effect of a degraded antiferromagnetic order and reduced JT activity weakens the Mottness of the system, leading to the emergence of superconductivity at higher temperatures.Comment: Maine article - 11 pages (single column), 4 figures. Supplemental attache

    Arrested States formed on Quenching Spin Chains with Competing Interactions and Conserved Dynamics

    Full text link
    We study the effects of rapidly cooling to T = 0 a spin chain with conserved dynamics and competing interactions. Depending on the degree of competition, the system is found to get arrested in different kinds of metastable states. The most interesting of these has an inhomogeneous mixture of interspersed active and quiescent regions. In this state, the steady-state autocorrelation function decays as a stretched exponential exp((t/τo)13)\sim \exp(-{(t/\tau_{o})}^{{1}\over{3}}), and there is a two-step relaxation to equilibrium when the temperature is raised slightly.Comment: 4 pages, Latex, 3 postscript figures. Phys. Rev. E to appear (1999

    Computational fluid dynamic analysis of the effect of inlet valve closing timing on common rail diesel engines fueled with butanol–diesel blends

    Get PDF
    The inlet valve closing (IVC) timing plays a crucial role in engine combustion, which impacts engine performance and emissions. This study attempts to measure the potential to use n-butanol (Bu) and its blends with the neat diesel in a common rail direct injection (CRDI) engine. The computational fluid dynamics (CFD) simulation is carried out to estimate the performance, combustion, and exhaust emission characteristics of n-butanol–diesel blends (0%–30% by volume) for variable valve timings. An experimental study is carried out using standard valve timing and blends to validate the CFD model (ESE AVL FIRE). After validation, the CFD model is employed to study the effect of variable valve timings for different n-butanol–diesel blends. Extended coherent flame model-3 zone (ECFM-3Z) is implemented to conduct combustion analysis, and the kappa–zeta–f (k–ζ–f) model is employed for turbulence modeling. The inlet valve closing (IVC) time is varied (advanced and retarded) from standard conditions, and optimized valve timing is obtained. Advancing IVC time leads to lower cylinder pressure during compression due to reduced trapped air mass. The brake thermal efficiency (BTE) is increased by 4.5%, 6%, and 8% for Bu10, Bu20, and Bu30, respectively, compared to Bu0. Based on BTE, optimum injection timings are obtained at 12° before the top dead center (BTDC) for Bu0 and 15° BTDC for Bu10, Bu20, and Bu30. Nitrogen oxide (NOx) emissions increase due to complete combustion. Due to IVC timing, further carbon monoxide and soot formation decreased with blends and had an insignificant effect

    Heat transport in ordered harmonic lattices

    Full text link
    We consider heat conduction across an ordered oscillator chain with harmonic interparticle interactions and also onsite harmonic potentials. The onsite spring constant is the same for all sites excepting the boundary sites. The chain is connected to Ohmic heat reservoirs at different temperatures. We use an approach following from a direct solution of the Langevin equations of motion. This works both in the classical and quantum regimes. In the classical case we obtain an exact formula for the heat current in the limit of system size N to infinity. In special cases this reduces to earlier results obtained by Rieder, Lebowitz and Lieb and by Nakazawa. We also obtain results for the quantum mechanical case where we study the temperature dependence of the heat current. We briefly discuss results in higher dimensions.Comment: 8 pages, 2 figures, published versio
    corecore