336 research outputs found

    Improved Measurement of the Muon Lifetime and Determination of the Fermi Constant

    Full text link
    The MuLan collaboration has measured the lifetime of the positve muon to a precision of 1.0 parts per million. The Fermi constant is determined to a precision of 0.6 parts per million.Comment: Proceedings of CKM2010, the 6th International Workshop on the CKM Unitarity Triangle, University of Warwick, UK, 6-10 September 201

    Hypoxia-Induced Oxidative Stress Modulation with Physical Activity.

    Get PDF
    Increased oxidative stress, defined as an imbalance between prooxidants and antioxidants, resulting in molecular damage and disruption of redox signaling, is associated with numerous pathophysiological processes and known to exacerbate chronic diseases. Prolonged systemic hypoxia, induced either by exposure to terrestrial altitude or a reduction in ambient O2 availability is known to elicit oxidative stress and thereby alter redox balance in healthy humans. The redox balance modulation is also highly dependent on the level of physical activity. For example, both high-intensity exercise and inactivity, representing the two ends of the physical activity spectrum, are known to promote oxidative stress. Numerous to-date studies indicate that hypoxia and exercise can exert additive influence upon redox balance alterations. However, recent evidence suggests that moderate physical activity can attenuate altitude/hypoxia-induced oxidative stress during long-term hypoxic exposure. The purpose of this review is to summarize recent findings on hypoxia-related oxidative stress modulation by different activity levels during prolonged hypoxic exposures and examine the potential mechanisms underlying the observed redox balance changes. The paper also explores the applicability of moderate activity as a strategy for attenuating hypoxia-related oxidative stress. Moreover, the potential of such moderate intensity activities used to counteract inactivity-related oxidative stress, often encountered in pathological, elderly and obese populations is also discussed. Finally, future research directions for investigating interactive effects of altitude/hypoxia and exercise on oxidative stress are proposed

    Polarization-Based Illumination Detection for Coherent Augmented Reality Scene Rendering in Dynamic Environments

    Get PDF
    A virtual object that is integrated into the real world in a perceptually coherent manner using the physical illumination information in the current environment is still under development. Several researchers investigated the problem producing a high-quality result; however, pre-computation and offline availability of resources were the essential assumption upon which the system relied. In this paper, we propose a novel and robust approach to identifying the incident light in the scene using the polarization properties of the light wave and using this information to produce a visually coherent augmented reality within a dynamic environment. This approach is part of a complete system which has three simultaneous components that run in real-time: (i) the detection of the incident light angle, (ii) the estimation of the reflected light, and (iii) the creation of the shading properties which are required to provide any virtual object with the detected lighting, reflected shadows, and adequate materials. Finally, the system performance is analyzed where our approach has reduced the overall computational cost

    Ventilatory responses to independent and combined hypoxia, hypercapnia and hypobaria in healthy pre-term-born adults.

    Get PDF
    Pre-term birth is associated with physiological sequelae that persist into adulthood. In particular, modulated ventilatory responsiveness to hypoxia and hypercapnia has been observed in this population. Whether pre-term birth per se causes these effects remains unclear. Therefore, we aimed to assess pulmonary ventilation and blood gases under various environmental conditions, comparing 17 healthy prematurely born individuals (mean ± SD; gestational age, 28 ± 2 weeks; age, 21 ± 4 years; peak oxygen uptake, 48.1 ± 11.2 ml kg <sup>-1</sup> min <sup>-1</sup> ) with 16 well-matched adults born at term (gestational age, 40 ± 1 weeks; age, 22 ± 2 years; peak oxygen uptake, 51.2 ± 7.7 ml kg <sup>-1</sup> min <sup>-1</sup> ). Participants were exposed to seven combinations of hypoxia/hypobaria (equivalent to ∼3375 m) and/or hypercapnia (3% CO <sub>2</sub> ), at rest for 6 min. Pulmonary ventilation, pulse oxygen saturation and the arterial partial pressures of O <sub>2</sub> and CO <sub>2</sub> were similar in pre-term and full-term individuals under all conditions. Higher ventilation in hypoxia compared to normoxia was only observed at terrestrial altitude, despite an equivalent (normobaric) hypoxic stimulus administered at sea level (0.138 ). Assessment of oscillations in key variables revealed that combined hypoxic hypercapnia induced greater underlying fluctuations in ventilation in pre-term individuals only. In general, higher pulse oxygen saturation fluctuations were observed with hypoxia, and lower fluctuations in end-tidal CO <sub>2</sub> with hypercapnia, despite similar ventilatory oscillations observed between conditions. These findings suggest that healthy prematurely born adults display similar overall ventilation to their term-born counterparts under various environmental stressors, but that combined ventilatory stimuli could induce an irregular underlying ventilatory pattern. Moreover, barometric pressure may be an important factor when assessing ventilatory responsiveness to moderate hypoxic stimuli. KEY POINTS: Evidence exists for unique pulmonary and respiratory function under hypoxic conditions in adult survivors of pre-term birth. Whether pre-term birth per se causes these differences requires a comparison of conventionally healthy prematurely born adults with an appropriately matched sample of term-born individuals. According to the present data, there is no difference between healthy pre-term and well-matched term-born individuals in the magnitude of pulmonary ventilation or arterial blood gases during independent and combined hypobaria, hypoxia and hypercapnia. Terrestrial altitude (hypobaria) was necessary to induce differences in ventilation between normoxia and a hypoxic stimulus equivalent to ∼3375 m of altitude. Furthermore, peak power in pulse oxygen saturation was similar between hypobaric normoxia and normobaric hypoxia. The observed similarities between groups suggest that ventilatory regulation under various environmental stimuli is not impaired by pre-term birth per se. Instead, an integrated combination of neonatal treatment strategies and cardiorespiratory fitness/disease status might underlie previously observed chemosensitivity impairments

    NeRFactor: Neural Factorization of Shape and Reflectance Under an Unknown Illumination

    Full text link
    We address the problem of recovering the shape and spatially-varying reflectance of an object from multi-view images (and their camera poses) of an object illuminated by one unknown lighting condition. This enables the rendering of novel views of the object under arbitrary environment lighting and editing of the object's material properties. The key to our approach, which we call Neural Radiance Factorization (NeRFactor), is to distill the volumetric geometry of a Neural Radiance Field (NeRF) [Mildenhall et al. 2020] representation of the object into a surface representation and then jointly refine the geometry while solving for the spatially-varying reflectance and environment lighting. Specifically, NeRFactor recovers 3D neural fields of surface normals, light visibility, albedo, and Bidirectional Reflectance Distribution Functions (BRDFs) without any supervision, using only a re-rendering loss, simple smoothness priors, and a data-driven BRDF prior learned from real-world BRDF measurements. By explicitly modeling light visibility, NeRFactor is able to separate shadows from albedo and synthesize realistic soft or hard shadows under arbitrary lighting conditions. NeRFactor is able to recover convincing 3D models for free-viewpoint relighting in this challenging and underconstrained capture setup for both synthetic and real scenes. Qualitative and quantitative experiments show that NeRFactor outperforms classic and deep learning-based state of the art across various tasks. Our videos, code, and data are available at people.csail.mit.edu/xiuming/projects/nerfactor/.Comment: Camera-ready version for SIGGRAPH Asia 2021. Project Page: https://people.csail.mit.edu/xiuming/projects/nerfactor

    Microvascular and oxidative stress responses to acute high-altitude exposure in prematurely born adults.

    Get PDF
    Premature birth is associated with endothelial and mitochondrial dysfunction, and chronic oxidative stress, which might impair the physiological responses to acute altitude exposure. We assessed peripheral and oxidative stress responses to acute high-altitude exposure in preterm adults compared to term born controls. Post-occlusive skeletal muscle microvascular reactivity and oxidative capacity from the muscle oxygen consumption recovery rate constant (k) were determined by Near-Infrared Spectroscopy in the vastus lateralis of seventeen preterm and seventeen term born adults. Measurements were performed at sea-level and within 1 h of arrival at high-altitude (3375 m). Plasma markers of pro/antioxidant balance were assessed in both conditions. Upon acute altitude exposure, compared to sea-level, preterm participants exhibited a lower reperfusion rate (7 ± 31% vs. 30 ± 30%, p = 0.046) at microvascular level, but higher k (6 ± 32% vs. -15 ± 21%, p = 0.039), than their term born peers. The altitude-induced increases in plasma advanced oxidation protein products and catalase were higher (35 ± 61% vs. -13 ± 48% and 67 ± 64% vs. 15 ± 61%, p = 0.034 and p = 0.010, respectively) and in xanthine oxidase were lower (29 ± 82% vs. 159 ± 162%, p = 0.030) in preterm compared to term born adults. In conclusion, the blunted microvascular responsiveness, larger increases in oxidative stress and skeletal muscle oxidative capacity may compromise altitude acclimatization in healthy adults born preterm

    DWBA analysis of the 13C(6Li,d)17O reaction at 10 MeV/nucleon and its astrophysical implications

    Full text link
    The value of the alpha spectroscopic factor (S_alpha) of the 6.356 MeV 1/2+ state of 17O is believed to have significant astrophysical implications due to the importance of the 13C(alpha,n)16O reaction as a possible source of neutron production for the s process. To further study this effect, an accurate measurement of the 13C(6Li,d)17O reaction at E_lab = 60 MeV has been performed recently by Kubono et al., who found a new value for the spectroscopic factor of the 6.356 MeV 1/2+ state of 17O based on a distorted wave Born approximation (DWBA) analysis of these data. This new value, S_alpha approximately = 0.011, is surprisingly much smaller than those used previously in astrophysical calculations (S_alpha approximately = 0.3-0.7) and thus poses a serious question as to the role of the 13C(alpha,n)16O reaction as a source of neutron production. In this work we perform a detailed analysis of the same 13C(6Li,d)17O data within the DWBA as well as the coupled reaction channel (CRC) formalism. Our analysis yields an S_alpha value of over an order of magnitude larger than that of Kubono et al. for the 6.356 MeV 1/2+ state of 17O.Comment: 17 pages, 4 figures, minor changes, accepted by Nuclear Physics

    Systematics of Inclusive Charged Particles Production with Medium Energy Protons

    Get PDF
    This work was supported by National Science Foundation Grants PHY 76-84033A01, PHY 78-22774, and Indiana Universit

    Effects of Robotic Knee Exoskeleton on Human Energy Expenditure

    Full text link
    corecore