507 research outputs found

    Frustrated multiband superconductivity

    Full text link
    We show that a clean multiband superconductor may display one or several phase transitions with increasing temperature from or to frustrated configurations of the relative phases of the superconducting order parameters. These transitions may occur when more than two bands are involved in the formation of the superconducting phase and when the number of repulsive interband interactions is odd. These transitions are signalled by slope changes in the temperature dependence of the superconducting gaps.Comment: 5 pages, 3 figure

    Tainted ores and the rise of tin bronzes in Eurasia, c. 6500 years ago

    Get PDF
    The earliest tin bronze artefacts in Eurasia are generally believed to have appeared in the Near East in the early third millennium BC. Here we present tin bronze artefacts that occur far from the Near East, and in a significantly earlier period. Excavations at Pločnik, a Vinča culture site in Serbia, recovered a piece of tin bronze foil from an occupation layer dated to the mid fifth millennium BC. The discovery prompted a reassessment of 14 insufficiently contextualised early tin bronze artefacts from the Balkans. They too were found to derive from the smelting of copper-tin ores. These tin bronzes extend the record of bronze making by c. 1500 years, and challenge the conventional narrative of Eurasian metallurgical development

    L-Arginine Intake Effect on Adenine Nucleotide Metabolism in Rat Parenchymal and Reproductive Tissues

    Get PDF
    L-arginine is conditionally essetcial amino acid, required for normal cell growth, protein synthesis, ammonia detoxification, tissue growth and general performance, proposed in the treatment of men sterility and prevention of male impotence. The aim of the present paper was to estimate the activity of the enzymes of adenine nucleotide metabolism: 5′-nucleotidase (5′-NU), adenosine deaminase (ADA), AMP deaminase, and xanthine oxidase (XO), during dietary intake of L-arginine for a period of four weeks of male Wistar rats. Adenosine concentration in tissues is maintained by the relative activities of the adenosine-producing enzyme, 5′-NU and the adenosine-degrading enzyme-ADA adenosine deaminase. Dietary L-arginine intake directed adenine nucleotide metabolism in liver, kidney, and testis tissue toward the activation of adenosine production, by increased 5′-NU activity and decreased ADA activity. Stimulation of adenosine accumulation could be of importance in mediating arginine antiatherosclerotic, vasoactive, immunomodulatory, and antioxidant effects. Assuming that the XO activity reflects the rate of purine catabolism in the cell, while the activity of AMP deaminase is of importance in ATP regeneration, reduced activity of XO, together with the increased AMP-deaminase activity, may suggest that adenine nucleotides are presumably directed to the ATP regenerating process during dietary L-arginine intake

    Application of semidefinite programming to maximize the spectral gap produced by node removal

    Full text link
    The smallest positive eigenvalue of the Laplacian of a network is called the spectral gap and characterizes various dynamics on networks. We propose mathematical programming methods to maximize the spectral gap of a given network by removing a fixed number of nodes. We formulate relaxed versions of the original problem using semidefinite programming and apply them to example networks.Comment: 1 figure. Short paper presented in CompleNet, Berlin, March 13-15 (2013

    Single Impurity Problem in Iron-Pnictide Superconductors

    Full text link
    Single impurity problem in iron-pnictide superconductors is investigated by solving Bogoliubov-de Gennes (BdG) equation in the five-orbital model, which enables us to distinguish s+_{+-} and s++_{++} superconducting states. We construct a five-orbital model suitable to BdG analysis. This model reproduces the results of random phase approximation in the uniform case. Using this model, we study the local density of states around a non-magnetic impurity and discuss the bound-state peak structure, which can be used for distinguishing s+_{+-} and s++_{++} states. A bound state with nearly zero-energy is found for the impurity potential I1.0I\sim 1.0 eV, while the bound state peaks stick to the gap edge in the unitary limit. Novel multiple peak structure originated from the multi-orbital nature of the iron pnictides is also found.Comment: 5 page

    Superconducting gap structure of the 115's revisited

    Full text link
    Density functional theory calculations of the electronic structure of Ce- and Pu-based heavy fermion superconductors in the so-called 115 family are performed. The gap equation is used to consider which superconducting order parameters are most favorable assuming a pairing interaction that is peaked at (\pi,\pi,q_z) - the wavevector for the antiferromagnetic ordering found in close proximity. In addition to the commonly accepted dx2y2d_{x^2-y^2} order parameter, there is evidence that an extended s-wave order parameter with nodes is also plausible. We discuss whether these results are consistent with current observations and possible measurements that could help distinguish between these scenarios.Comment: 8 pages, 4 figures; Accepted for publication in JPC

    Electronic structure of optimally doped pnictide Ba0.6_{0.6}K0.4_{0.4}Fe2_2As2_2: a comprehensive ARPES investigation

    Full text link
    We have conducted a comprehensive angle-resolved photoemission study on the normal state electronic structure of the Fe-based superconductor Ba0.6_{0.6}K0.4_{0.4}Fe2_2As2_2. We have identified four dispersive bands which cross the Fermi level and form two hole-like Fermi surfaces around Γ\Gamma and two electron-like Fermi surfaces around M. There are two nearly nested Fermi surface pockets connected by an antiferromagnetic (π\pi, π\pi) wavevector. The observed Fermi surfaces show small kzk_z dispersion and a total volume consistent with Luttinger theorem. Compared to band structure calculations, the overall bandwidth is reduced by a factor of 2. However, many low energy dispersions display stronger mass renormalization by a factor of \sim 4, indicating possible orbital (energy) dependent correlation effects. Using an effective tight banding model, we fitted the band structure and the Fermi surfaces to obtain band parameters reliable for theoretical modeling and calculations of the important physical quantities, such as the specific heat coefficient.Comment: 13 pages, 4 figure

    Role of Hund's coupling in stabilization of the (0,pi) ordered SDW state within the minimal two-band model for iron pnictides

    Full text link
    Spin wave excitations and stability of the (0,pi) ordered SDW state are investigated within the minimal two-band model for iron pnictides including a Hund's coupling term. The SDW state is shown to be stable in two distinct doping regimes --- finite hole doping in the lower SDW band for small second neighbour hoppings, and small electron doping in the upper SDW band for comparable first and second neighbour hoppings. In both cases, Hund's coupling strongly stabilizes the SDW state due to generation of additional ferromagnetic spin couplings involving the inter-orbital part of the particle-hole propagator. Spin wave energies for the two-band model are very similar to the one-band t-t' Hubbard model results obtained earlier, and are in agreement with inelastic neutron scattering studies of iron pnictides.Comment: 9 pages, 4 figure

    Spectral Simplicity of Apparent Complexity, Part I: The Nondiagonalizable Metadynamics of Prediction

    Full text link
    Virtually all questions that one can ask about the behavioral and structural complexity of a stochastic process reduce to a linear algebraic framing of a time evolution governed by an appropriate hidden-Markov process generator. Each type of question---correlation, predictability, predictive cost, observer synchronization, and the like---induces a distinct generator class. Answers are then functions of the class-appropriate transition dynamic. Unfortunately, these dynamics are generically nonnormal, nondiagonalizable, singular, and so on. Tractably analyzing these dynamics relies on adapting the recently introduced meromorphic functional calculus, which specifies the spectral decomposition of functions of nondiagonalizable linear operators, even when the function poles and zeros coincide with the operator's spectrum. Along the way, we establish special properties of the projection operators that demonstrate how they capture the organization of subprocesses within a complex system. Circumventing the spurious infinities of alternative calculi, this leads in the sequel, Part II, to the first closed-form expressions for complexity measures, couched either in terms of the Drazin inverse (negative-one power of a singular operator) or the eigenvalues and projection operators of the appropriate transition dynamic.Comment: 24 pages, 3 figures, 4 tables; current version always at http://csc.ucdavis.edu/~cmg/compmech/pubs/sdscpt1.ht
    corecore