21 research outputs found

    Energy loss of proton and lead beams in the CERN-SPS

    Get PDF
    The energy loss of an unbunched beam circulating in the CERN-SPS has been obtained from the observed frequency change of a longitudinal Schottky signal. This experiment was carried out for protons at 14, 120 and 270 GeV/c and for lead ions PB82208 at Z .270 GeV/c momentum. The dominant effects which determine the energy loss are synchrotron radiation, ionization of the residual gas and parasitic mode loss in the resistive longitudinal impedance. Since all the protons in a lead nucleus radiate coherently the synchrotron radiation is proportional to Z2 like the other effects. The experimental results are analyzed and the contributions of the individual effects determined. Using an impedance of | Z/n | ~ 12 W gives the best fit through the experimental data

    Viral G protein-coupled receptor up-regulates Angiopoietin-like 4 promoting angiogenesis and vascular permeability in Kaposi's sarcoma

    No full text
    Kaposi's sarcoma (KS) is an enigmatic vascular tumor thought to be a consequence of dysregulated expression of the human herpesvirus-8 (HHV-8 or KSHV)-encoded G protein-coupled receptor (vGPCR). Indeed, transgenic animals expressing vGPCR manifest vascular tumors histologically identical to human KS, with expression of the viral receptor limited to a few cells, suggestive of a paracrine mechanism for vGPCR tumorigenesis. Both human and vGPCR experimental KS lesions are characterized by prominent angiogenesis and vascular permeability attributed to the release of angiogenic molecules, most notably vascular endothelial growth factor. However, the relative contribution of these paracrine mediators to the angiogenic and exudative phenotype of KS lesions remains unclear. Here we show that vGPCR up-regulation of Angiopoietin-like 4 (ANGPTL4) plays a prominent role in promoting the angiogenesis and vessel permeability observed in KS. Indeed, ANGPTL4 expression is a hallmark of vGPCR experimental and human KS lesions. Inhibition of ANGPTL4 effectively blocks vGPCR promotion of the angiogenic switch and vascular leakage in vitro and tumorigenesis in vivo. These observations suggest that ANGPTL4 is a previously unrecognized target for the treatment of patients with KS. As angiogenesis and increased vessel permeability are common themes in all solid tumors, these findings may have a broad impact on our understanding and treatment of cancer

    Productively Infected Murine Kaposi's Sarcoma-Like Tumors Define New Animal Models for Studying and Targeting KSHV Oncogenesis and Replication

    Get PDF
    Kaposi's sarcoma (KS) is an AIDS-defining cancer caused by the KS-associated herpesvirus (KSHV). KS tumors are composed of KSHV-infected spindle cells of vascular origin with aberrant neovascularization and erythrocyte extravasation. KSHV genes expressed during both latent and lytic replicative cycles play important roles in viral oncogenesis. Animal models able to recapitulate both viral and host biological characteristics of KS are needed to elucidate oncogenic mechanisms, for developing targeted therapies, and to trace cellular components of KS ontogeny. Herein, we describe two new murine models of Kaposi's sarcoma. We found that murine bone marrow-derived cells, whether established in culture or isolated from fresh murine bone marrow, were infectable with rKSHV.219, formed KS-like tumors in immunocompromised mice and produced mature herpesvirus-like virions in vivo. Further, we show in vivo that the histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA/Vorinostat) enhanced viral lytic reactivation. We propose that these novel models are ideal for studying both viral and host contributions to KSHV-induced oncogenesis as well as for testing virally-targeted antitumor strategies for the treatment of Kaposi's sarcoma. Furthermore, our isolation of bone marrow-derived cell populations containing a cell type that, when infected with KSHV, renders a tumorigenic KS-like spindle cell, should facilitate systematic identification of KS progenitor cells
    corecore