15,975 research outputs found

    Thermoelectric and thermal rectification properties of quantum dot junctions

    Full text link
    The electrical conductance, thermal conductance, thermal power and figure of merit (ZT) of semiconductor quantum dots (QDs) embedded into an insulator matrix connected with metallic electrodes are theoretically investigated in the Coulomb blockade regime. The multilevel Anderson model is used to simulate the multiple QDs junction system. The charge and heat currents in the sequential tunneling process are calculated by the Keldysh Green function technique. In the linear response regime the ZT values are still very impressive in the small tunneling rates case, although the effect of electron Coulomb interaction on ZT is significant. In the nonlinear response regime, we have demonstrated that the thermal rectification behavior can be observed for the coupled QDs system, where the very strong asymmetrical coupling between the dots and electrodes, large energy level separation between dots and strong interdot Coulomb interactions are required.Comment: 8 page and 14 figure

    Majorana zero modes in a quantum Ising chain with longer-ranged interactions

    Full text link
    A one-dimensional Ising model in a transverse field can be mapped onto a system of spinless fermions with p-wave superconductivity. In the weak-coupling BCS regime, it exhibits a zero energy Majorana mode at each end of the chain. Here, we consider a variation of the model, which represents a superconductor with longer ranged kinetic energy and pairing amplitudes, as is likely to occur in more realistic systems. It possesses a richer zero temperature phase diagram and has several quantum phase transitions. From an exact solution of the model these phases can be classified according to the number of Majorana zero modes of an open chain: 0, 1, or 2 at each end. The model posseses a multicritical point where phases with 0, 1, and 2 Majorana end modes meet. The number of Majorana modes at each end of the chain is identical to the topological winding number of the Anderson's pseudospin vector that describes the BCS Hamiltonian. The topological classification of the phases requires a unitary time-reversal symmetry to be present. When this symmetry is broken, only the number of Majorana end modes modulo 2 can be used to distinguish two phases. In one of the regimes, the wave functions of the two phase shifted Majorana zero modes decays exponentially in space but but in an oscillatory manner. The wavelength of oscillation is identical to the asymptotic connected spin-spin correlation of the XY-model in a transverse field to which our model is dual.Comment: 11 pages, 8 figures; brief clarifying comments added; few new references; this version is accepted in Phys. Rev.
    • …
    corecore