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Wireless Inference-based Notification (WIN) without Packet Decoding 

Kevin Chen and H. T. Kung 
School of Engineering and Applied Sciences 

Harvard University, Cambridge, MA 02138, USA 

Abstract 

We consider ultra-energy-efficient wireless transmission of notifications in sensor networks. We argue that the usual 
practice where a receiver decodes packets sent by a remote node to acquire its state or message is suboptimal in en-
ergy use. We propose an alternative approach where a receiver first (1) performs physical-layer matched filtering on 
arrived packets without actually decoding them at the link or higher layer, and then (2) based on the matching results 
infers the sender's state or message from the time-series pattern of packet arrivals. We show that hierarchical multi-
layer inference can be effective for this purpose in coping with channel noise. Because packets are not required to be 
decodable by the receiver, the sender can reach a farther receiver without increasing the transmit power or, equiva-
lently, a receiver at the same distance with a lower transmit power. We call our scheme Wireless Inference-based 
Notification (WIN) without packet decoding. We demonstrate by analysis and simulation WIN allows a sender to 
multiply its notification distance.  We show how senders can realize these energy-efficiency benefits with un-
changed system and protocols; only receivers, which normally are larger systems than senders and have ample com-
puting and power resources, need to run WIN-compliance systems. 

1. Introduction
We consider a common sensor network scenario where 
remote senders, such as sensors, transmit notifications 
about event detected and their states (e.g., remaining 
battery power) to some designated receivers over wire-
less channels.  In such a scenario, it is often desirable 
that nodes draw only a small amount of power in 
transmitting such notifications. This would allow 
transmitters to survive for a long time like years even 
operating on a small coin battery, in applications such 
as industrial monitoring and home automation. 

Under a conventional approach (e.g., [1]), we will 
adopt a low-power wireless network, e.g., Bluetooth or 
ZigBee, to send notifications. A sender will periodically 
transmit normal packets to report that it is in a normal 
state, and start transmitting event packets when it enters 
an event state upon noticing events of interest. A re-
ceiver will decode each received packet to determine if 
it is a normal or event packet, and in the latter case, 
may also examine packet payload to obtain further in-
formation about the event. In real-world applications, 
we expect that the bulk of the transmission is for nor-
mal packets and transmission of event packets is rela-
tively infrequent. This means that it is especially im-
portant for the sender to minimize transmission energy 
for normal packets, while being able to quickly alert the 
receiver when events of interest occur. 

We argue that for many sensor applications this con-
ventional approach is suboptimal in terms of energy 
use. For example, there is no need for the sender to 
transmit at a relatively high transmit power to ensure all 
these normal packets transmitted can be decoded by the 
receiver, if the time series of packet arrivals can already 
reveal that the sender is in the normal state. Upon notic-
ing events of interest a sender merely need to seek at-
tention from the receiver about the new situation. To 
this end, the sender can just transmit packets with a 
different pattern in time series. The receiver can then 
use a robust inference method to classify the sender 
being in a normal or event state based on patterns in the 
time series of packet arrivals, without having to decode 
packets. 

In this paper we explore such inference-based ap-
proaches where no packet decoding is required. This 
would enable the receiver to operate at a lower signal-
to-noise ratio (SNR), and, in turn, allow the sender to 
reach receiver at the same distance with lower transmit 
power or, equivalently, farther receivers with the same 
transmit power.  

A key issue with such approaches is their accuracy in 
classifying the current state of the sender in low SNR 
situations when the receiver is distance away, and/or 
the wireless chancel is noisy. We show in this paper 
how a two-layer hierarchical inference can be effective 
in providing robust and reliable classification based on 
the time series of packet arrivals which may be distort-
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ed or partially missing. We call our approach Wireless 
Inference-based Notification (WIN) without Packet 
Decoding, or for short, WIN. 

2.  Overview of the WIN Approach and 
Comparison with Conventional Methods 
We review the conventional approach of transmitting 
notifications, and then describe at a high level how our 
proposed WIN approach can accomplish the same task 
with lower energy consumption. 
 
A conventional method would use a wireless network 
designed for energy-constrained applications, such as 
Bluetooth LE, ANT+ or ZigBee [2, 3, 4]. While hard-
ware and protocols of these networks have been opti-
mized for low-energy senders, they are still based on 
the conventional network-layering abstraction. In par-
ticular, packets must be decoded at the link or a higher 
layer in order to reveal packet load that contains notifi-
cation messages. To be specific, in the rest of the paper, 
we will use Bluetooth LE [8] as our comparison target. 
 
As depicted in Figure 2, under the conventional ap-
proach a sender periodically transmits normal packets 
(black) to a receiver to report that the sender is alive 
and it is in a normal state. Upon noticing events of in-
terest, the sender enters the event state and starts trans-
mitting event packets (red). The receiver will attempt to 
decode every received packet to determine the state of 
the sender.  
 
Under a corresponding WIN approach, the sender in the 
normal state will periodically transmit normal packet 
like in the conventional approach. When the sender 
enters the event state, it will transmit event packets pe-
riodically under a different arrangement about the 
length of packet burst or gap. Figure 2 depict of an ex-
ample of such a WIN scheme based on the following 
time series of packet transmissions:  

Normal state: burst =1 and gap = 3 
Event state: burst = 2 and gap = 6 

Note that in supporting WIN, a conventional sender 
does not need to change its protocol stack; all it needs 
to do is to change packet transmission patterns during 
the event state. Thus existing sensor transmission sys-
tems are readily useable.  This is an advantage over 
other approaches that also exploit physical layer signal 
properties [5]. 

The receiver employs physical-layer matched filters to 
determine whether each time slot has an arriving pack-
et. Based on the matching results from multiple time 
slots, the receiver uses inference methods to infer the 
state of the sender (see Sections 3). By making use of 
aggregated matching results from multiple time slots 
and leveraging the designed-in separation between the 
time series of packet transmissions for the normal vs. 
event state, as we will show later, a WIN receiver can 
operate at a lower SNR. As a result, a distant receiver 
may still be able to infer the state of the sender even it 
cannot decode normal or event packets. This is illus-
trated in Figure 1. When a receiver determines that the 
sender is in the event state, should the receiver happen 
to be mobile, it could move itself closer to the sender to 
decode the event packet and learn about the event. Al-
ternatively, the receiver may dispatch other agents for 
the task. 

3.  Inference Methods Used by WIN  
WIN infers the state of the sender from physical layer 
measurements on arrived packets. The receiver matches 
arriving signals against a dictionary of patterns corre-
sponding to the sender’s states.  Let x be the signal 
sensed over a number of time slots, and xi be the signal 
for slot 𝑖.  Consider, for example, the scenario in Figure 
2, where the sender transmits one packet every four 
slots in the normal state, and 2 back-to-back packets 
every eight slots in the event state.  No packets will be 
sent when sender is inactive. Hereafter, we sometimes 
refer these time slots as subintervals. 

 
 
Figure 2. Conventional approach vs. WIN. Time slots 
labeled by time are shown at the bottom. Solid bars 
denote normal (black) and event (red) packets trans-
mitted at various time slots. 
 

 
 
Figure 1. A WINP receiver, receiver 2, can receive 
notification from the sender at a distance beyond the 
packet decoding range. In contrast, a conventional 
receiver, receiver 1, can receive notification only in 
the decoding range. 

 
 



THEOREM 1  If x is 𝑁𝑚(𝐦𝑥, 𝐈𝑚) and B is an 
𝑚 × 𝑚 projection matrix of rank k then 𝐱𝐻𝐁𝐱 has a 
noncentral 𝜒𝑘2(𝛿) distribution where 𝛿 = 𝐦𝒙

𝑯𝐁𝐦𝒙. 

We use a two-layer hierarchical model to infer the state 
of the sender.  In the first layer (the lower layer), we 
perform a matched filtering operation matching the 
observed signal t over a subinterval against all possible 
locations of a target pattern within a slot, and compute 
the sum 𝑚𝑖 of the k largest values for subinterval i. (For 
our setting, k = 2 as there are at most two expected 
packets per subinterval.) In the second layer (the upper 
layer), we find the mean m of all mi, and classify ac-
cording to m.  Figure 3 depicts a simulation result on 
the distribution of m conditioned on the three different 
states, at -15dB SNR. As shown in the figure, the dis-
tribution of m is fairly close to Gaussian distribution, 
which can be explained by central limit theorem.  The 
inferred state 𝑠 is selected according to:  

𝑠 = �
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒,   𝑚 < 𝑡𝑛
𝑛𝑜𝑟𝑚𝑎𝑙,   𝑚 < 𝑡𝑒 
𝑒𝑣𝑒𝑛𝑡,   𝑚 ≥ 𝑡𝑒

 

 
where thresholds 𝑡𝑛 and 𝑡𝑒 are chosen to satisfy a noti-
fication false positive rate 𝑅𝑛 and an event false positive 
rate 𝑅𝑐. 

Our method is a special case of a two-layer model that 
computes sparse representations of input in machine 
learning [6]. Our problem here is simpler because we 
can design the dictionary and assure that the dictionary 
entries are well separated to increase inference accura-
cy.  

4.  Performance Analysis 
We compare the conventional approach and WIN by 
computing their probabilities of successful transmission 
of notification. For both methods, the sender is allowed 
to transmit at most R packets, where each packet con-
sists of n bits.  A conventional transmission is success-
ful if the receiver correctly decodes a packet with no 
CRC error. A WIN transmission is successful if the 
sender’s state is classified correctly. 

Performance of Conventional Approach 
A conventional method would only fail when none of 
the 𝑅 packets pass the CRC. Thus, 

𝑝(𝑓𝑎𝑖𝑙) = �1 − �1 −
1
2
𝑒𝑟𝑓𝑐(𝑆𝑁𝑅)�

𝑛

�
𝑅

 

where 𝐵𝐸𝑅 = 1
2
𝑒𝑟𝑓𝑐(𝑆𝑁𝑅) for some 𝑆𝑁𝑅 = 𝐸𝑏

𝑁0
 . 

WIN Performance 
In WIN, transmission fails if a state is misclassified.  
We will first find the distribution of detector z for each 
time slot, and then derive the distribution of the second 
layer detector m.  Finally, we will estimate the probabil-
ity of classification error by WIN. 

Let t be the pattern of a packet in physical layer, and y 
be the sensed signal. We consider the hypothesis test on 
hypotheses 𝐻0 and 𝐻1: 

𝑦 = � 𝐻0:𝑤
𝐻1: 𝑡 + 𝑤 

where 𝑤~𝑁(0, 𝐈) is noise from an AWGN channel.  
Then, a physical-layer detector based on matched filter 
can be expressed as  𝑧 = |𝑡𝐻𝑦|2 = 𝑦𝐻𝑡𝑡𝐻𝑦 = 𝑦𝑇𝑦  
where 𝑇 = 𝑡𝑡𝐻 is a rank-1 matrix.  We follow the anal-
ysis by Reed et al to compute false positive rates in 
detecting packets with matched filter [7].  This gives 
the distribution of z as summarized in the following 
theorem:  

By theorem 1, the distribution of z is 

𝜒12(𝑑) = 𝑒−𝑧−|𝑡|2I0 �2�𝑧|𝑡|2� 

where I0 is the modified Bessel function of the first 
kind. We have 𝑑 = 𝑑0 = 0 ,𝑑 = 𝑑1 = 𝑡𝐻𝑇𝑡 = |𝑡|2 for 
the two hypotheses 𝐻0 and 𝐻1, respectively.  The mean 
and variance (𝜇,𝜎2) of 𝑧 is (1,1) under 𝐻0 and (d1+1, 
2d1+2) under 𝐻1.  Given 𝑆𝑁𝑅 = 𝐸𝑏

𝑁0
 under unit variance 

Gaussian noise, we have |𝑡|2 = |𝑛𝑆𝑁𝑅|2 where n is the 
number of bits per packet.  Now, we have the distribu-
tion of matched filter detector z as a function of channel 
𝑆𝑁𝑅. 

Let Z0 and Z1 denote the random variables drawn from 
p(z|H0) and p(z|H1).  The second layer detector m is then 

𝑚~�
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒: 𝑀 = 𝑅𝑍0

              𝑛𝑜𝑟𝑚𝑎𝑙: 𝑀 = 𝑅
2

(𝑍0 + 𝑍1)
     𝑒𝑣𝑒𝑛𝑡: 𝑀 = 𝑅𝑍1

 

 
Figure 3. Probability distributions of the value of 
the matching metric 𝒎 for state inactive, normal 
and event.  Dotted lines are approximations with 
Gaussian. 
 



where R is the max total number of packets to be 
transmitted.  Since M is just a sum of random variables 
for which we know the mean and variance, we then 
approximate the distribution of m with normal distribu-
tion: 

𝑚~�
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒: 𝑁(𝑅,𝑅)

 𝑛𝑜𝑟𝑚𝑎𝑙: 𝑁(𝑅2(𝑑1 + 2), 𝑅2(2𝑑1 + 3))
𝑒𝑣𝑒𝑛𝑡: 𝑁(𝑅(𝑑1 + 1),𝑅(2𝑑1 + 2))

 

Once we have the distribution of detector m, we can 
then select thresholds 𝑡𝑛 and 𝑡𝑒 to satisfy desired 
bounds on notification false positive rate 𝑅𝑛 and an 
event false positive rate 𝑅𝑐 using the quantile function 
of normal distribution: 

𝑡𝑛 = 𝑅 + √2𝑅  𝑒𝑟𝑓−1(1 − 2𝑅𝑛)
𝑡𝑒 = 𝑅

2(𝑑1 + 2) + �2𝑅(2𝑑1 + 3)  𝑒𝑟𝑓−1(1 − 2𝑅𝑒)
 

After selecting thresholds according to the false posi-
tive rates, we can derive the false negative rate for clas-
sifying normal and event states.  For simplicity, we take 
the max of these two as the failure rate for WIN: 

𝑝(𝑓𝑎𝑖𝑙) =
1
2
⎩
⎨

⎧
1 + 𝑒𝑟𝑓

⎝

⎛𝑡𝑒 − 𝑅(𝑑1 + 1)

�2𝑅(2𝑑1 + 2)⎠

⎞

⎭
⎬

⎫
 

We compare the WIN failure rate to that of the conven-
tional approach derived earlier in Section 4 by evaluat-
ing failure rate at different SNR. As shown in Figure 4, 
WIN clearly outperforms the conventional approach.  

5.  Simulation 
We present the simulation results on the error rate for 
the conventional system and the WIN proposal. Like 
our analysis, we assume an AWGN channel in these 
simulations.  The number of total packets (R) in a com-
plete transmission is 20, and the number of bits per 
packet (n) is 80.  Since CRC error becomes more likely 
when the packet size is larger, we select the smallest 
packet size for a wireless network to avoid bias against 

the conventional method. This size is 80 bits according 
to the specifications of Bluetooth LE [8]. 

As shown in Figure 4, WIN achieves error rates lower 
than 1% as long as the received SNR is greater than -
10dB, while the conventional method has more than 1% 
error at 3 dB.  In other words, there is roughly a 13 dB 
gain for WIN 

. Note that our analytic estimations match closely to the 
results obtained by simulation. 

7.  Conclusion  
Conventional network layering is provided to support 
modular design principles, but it is at the expense of 
losing information in each layer. For example, in the 
physical layer we loss information from demodulation 
and in the link layer we loss information when we toss 
the entire packet upon CRC errors [8].  Such infor-
mation loss means a substantial drawback for applica-
tions that have stringent low-energy requirements. Via 
interference technology based on machine learning, 
WIN aims at making use of all information resulting 
from physical-layer matched filtering operations. In 
addition, WIN leverages designed-in separation be-
tween traffic patterns of different states of the sender, 
so the state classification can be tolerant to channel 
noise. For these reasons, we have shown that WIN can 
achieve 13 dB gains in terms of robustness against 
channel noise. Lowering the required signal strength at 
receiver by 13 dB translates to 4.5x range in free space.  
Our results may be useful for future ultra-low power 
designs for notification transmission over wireless 
channels.  
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