224 research outputs found

    Hunting for open clusters in \textit{Gaia} DR2: the Galactic anticentre

    Full text link
    The Gaia Data Release 2 (DR2) provided an unprecedented volume of precise astrometric and excellent photometric data. In terms of data mining the Gaia catalogue, machine learning methods have shown to be a powerful tool, for instance in the search for unknown stellar structures. Particularly, supervised and unsupervised learning methods combined together significantly improves the detection rate of open clusters. We systematically scan Gaia DR2 in a region covering the Galactic anticentre and the Perseus arm (120≤l≤205(120 \leq l \leq 205 and −10≤b≤10)-10 \leq b \leq 10), with the goal of finding any open clusters that may exist in this region, and fine tuning a previously proposed methodology successfully applied to TGAS data, adapting it to different density regions. Our methodology uses an unsupervised, density-based, clustering algorithm, DBSCAN, that identifies overdensities in the five-dimensional astrometric parameter space (l,b,ϖ,μα∗,μδ)(l,b,\varpi,\mu_{\alpha^*},\mu_{\delta}) that may correspond to physical clusters. The overdensities are separated into physical clusters (open clusters) or random statistical clusters using an artificial neural network to recognise the isochrone pattern that open clusters show in a colour magnitude diagram. The method is able to recover more than 75% of the open clusters confirmed in the search area. Moreover, we detected 53 open clusters unknown previous to Gaia DR2, which represents an increase of more than 22% with respect to the already catalogued clusters in this region. We find that the census of nearby open clusters is not complete. Different machine learning methodologies for a blind search of open clusters are complementary to each other; no single method is able to detect 100% of the existing groups. Our methodology has shown to be a reliable tool for the automatic detection of open clusters, designed to be applied to the full Gaia DR2 catalogue.Comment: 8 pages, accepted by Astronomy and Astrophysics (A&A) the 14th May, 2019. Tables 1 and 2 available at the CD

    Abundances and kinematics for ten anticentre open clusters

    Get PDF
    Open clusters are distributed all across the disk and are convenient tracers of its properties. In particular, outer disk clusters bear a key role for the investigation of the chemical evolution of the Galactic disk. The goal of this study is to derive homogeneous elemental abundances for a sample of ten outer disk OCs, and investigate possible links with disk structures such as the Galactic Anticenter Stellar Structure. We analyse high-resolution spectra of red giants, obtained from the HIRES@Keck and UVES@VLT archives. We derive elemental abundances and stellar atmosphere parameters by means of the classical equivalent width method. We also performed orbit integrations using proper motions. The Fe abundances we derive trace a shallow negative radial metallicity gradient of slope -0.027+/-0.007 dex.kpc-1 in the outer 12 kpc of the disk. The [alpha/Fe] gradient appears flat, with a slope of 0.006+/-0.007 dex.kpc-1 . The two outermost clusters (Be 29 and Sau 1) appear to follow elliptical orbits. Be 20 also exhibits a peculiar orbit with a large excursion above the plane. The irregular orbits of the three most metal-poor clusters (of which two are located at the edge of the Galactic disk), if confirmed by more robust astrometric measurements such as those of the Gaia mission, are compatible with an inside-out formation scenario for the Milky Way, in which extragalactic material is accreted onto the outer disk. We cannot determine if Be 20, Be 29,and Sau 1 are of extragalactic origin, as they may be old genuine Galactic clusters whose orbits were perturbed by accretion events or minor mergers in the past 5 Gyr, or they may be representants of the thick disk population. The nature of these objects is intriguing and deserves further investigations in the near future.Comment: 17 pages, 9 figures; accepted for publication in A&

    A ring in a shell: the large-scale 6D structure of the Vela OB2 complex

    Get PDF
    The Vela OB2 association is a group of 10 Myr stars exhibiting a complex spatial and kinematic substructure. The all-sky Gaia DR2 catalogue contains proper motions, parallaxes (a proxy for distance) and photometry that allow us to separate the various components of Vela OB2. We characterise the distribution of the Vela OB2 stars on a large spatial scale, and study its internal kinematics and dynamic history. We make use of Gaia DR2 astrometry and published Gaia-ESO Survey data. We apply an unsupervised classification algorithm to determine groups of stars with common proper motions and parallaxes. We find that the association is made up of a number of small groups, with a total current mass over 2330 Msun. The three-dimensional distribution of these young stars trace the edge of the gas and dust structure known as the IRAS Vela Shell across 180 pc and shows clear signs of expansion. We propose a common history for Vela OB2 and the IRAS Vela Shell. The event that caused the expansion of the shell happened before the Vela OB2 stars formed, imprinted the expansion in the gas the stars formed from, and most likely triggered star formation.Comment: Accepted by A&A (02 November 2018), 13 pages, 9+2 figure

    The structure and 3D kinematics of vela OB2

    Get PDF
    The kinematics of stars in OB associations can provide insights into their formation, dynamical evolution, and eventual fate. The low-mass stellar content of OB associations are sufficiently numerous as to provide a detailed sampling of their kinematic properties, however spectroscopy is required to confirm the youth of individual stars and to get 3D kinematics. In this paper, we present and analyse results from a large spectroscopic survey of Vela OB2 conducted using 2dF/HERMES on the AAT. This spectroscopy is used to confirm the youth of candidate young stars and determine radial velocities, which are combined with proper motions and parallaxes from Gaia to measure 3D positions and velocities. We identify multiple separate kinematic groups in the region, for which we measure velocity dispersions and infer their virial states. We measure expansion rates for all these groups and find strong evidence for anisotropic expansion in the Vela OB2 association of at least 11σ significance in all three dimensions, as well as some evidence for expansion in the γ Vel and P Puppis clusters. We trace back the motions of these groups into the past and find that the open cluster NGC 2547 is an interloper in the Vela OB2 region and actually formed >100 pc away from the association. We conclude that Vela OB2 must have formed with considerable spatial and kinematic substructure over a time-scale of ∼10 Myr, with clear temporal substructure within the association, but no clear evidence for an age gradient

    The multiplicity fraction in 202 open clusters from Gaia

    Full text link
    In this study, we estimate the fraction of binaries with high mass ratios for 202 open clusters in the extended solar neighbourhood (closer than 1.5 kpc from the Sun). This is one of the largest homogeneous catalogues of multiplicity fractions in open clusters to date, including the unresolved and total (close-binary) multiplicity fractions of main-sequence systems with mass ratio larger than 0.6−0.15+0.050.6_{-0.15}^{+0.05}. The unresolved multiplicity fractions are estimated applying a flexible mixture model to the observed Gaia colour-magnitude diagrams of the open clusters. Then we use custom Gaia simulations to account for the resolved systems and derive the total multiplicity fractions. The studied open clusters have ages between 6.6 Myr and 3.0 Gyr and total high-mass-ratio multiplicity fractions between 6% and 80%, with a median of 18%. The multiplicity fractions increase with the mass of the primary star, as expected. The average multiplicity fraction per cluster displays an overall decreasing trend with the open cluster age up to ages about 100 Myr, above which the trend increases. Our simulations show that most of this trend is caused by complex selection effects (introduced by the mass dependence of the multiplicity fraction and the magnitude limit of our sample). Furthermore, the multiplicity fraction is not significantly correlated with the clusters' position in the Galaxy. The spread in multiplicity fraction decreases significantly with the number of cluster members (used as a proxy for cluster mass). We also find that the multiplicity fraction decreases with metallicity, in line with recent studies using field stars.Comment: 17 pages, 13 figures, resubmitted to A&A following referee comment

    The old, metal-poor, anticentre open cluster Trumpler 5

    Get PDF
    As part of a long-term programme, we analyse the evolutionary status and properties of the old and populous open cluster Trumpler 5 (Tr 5), located in the Galactic anticentre direction, almost on the Galactic plane. Tr 5 was observed with Wide Field Imager@MPG/ESO Telescope using the Bessel U, B, and V filters. The cluster parameters have been obtained using the synthetic colour-magnitude diagram (CMD) method, i.e. the direct comparison of the observational CMD with a library of synthetic CMDs generated with different stellar evolution sets (Padova, FRANEC, and FST). Age, reddening, and distance are derived through the synthetic CMD method using stellar evolutionary models with subsolar metallicity (Z = 0.004 or Z = 0.006). Additional spectroscopic observations with Ultraviolet VLT Echelle Spectrograph@Very Large Telescope of three red clump stars of the cluster were used to determine more robustly the chemical properties of the cluster. Our analysis shows that Tr 5 has subsolar metallicity, with [Fe/H] = -0.403 ± 0.006 dex (derived from spectroscopy), age between 2.9 and 4 Gyr (the lower age is found using stellar models without core overshooting), reddening E(B - V) in the range 0.60-0.66 mag complicated by a differential pattern (of the order of ̃±0.1 mag), and distance modulus (m - M)0 = 12.4 ± 0.1 mag

    Age determination for 269 GaiaGaia DR2 Open Clusters

    Get PDF
    ContextContext. Gaia Second Data Release provides precise astrometry and photometry for more than 1.3 billion sources. This catalog opens a new era concerning the characterization of open clusters and test stellar models, paving the way for a better understanding of the disc properties. AimsAims. The aim of the paper is to improve the knowledge of cluster parameters, using only the unprecedented quality of the Gaia photometry and astrometry. MethodsMethods. We make use of the membership determination based on the precise Gaia astrometry and photometry. We apply anautomated Bayesian tool, BASE-9, to fit stellar isochrones on the observed G, GBP, GRP magnitudes of the high probability member stars. ResultsResults. We derive parameters such as age, distance modulus and extinction for a sample of 269 open clusters, selecting only low reddening objects and discarding very young clusters, for which techniques other than isochrone-fitting are more suitable for estimating ages.Comment: 14 pages, 11 figures. Submitte

    The Gaia-ESO Survey: N-body modelling of the Gamma Velorum cluster

    Get PDF
    The Gaia-ESO Survey has recently unveiled the complex kinematic signature of the Gamma Velorum cluster: this cluster is composed of two kinematically distinct populations (hereafter, population A and B), showing two different velocity dispersions and a relative ~2 km s^-1 radial velocity (RV) shift. In this paper, we propose that the two populations of the Gamma Velorum cluster originate from two different sub-clusters, born from the same parent molecular cloud. We investigate this possibility by means of direct-summation N-body simulations. Our scenario is able to reproduce not only the RV shift and the different velocity dispersions, but also the different centroid (~0.5 pc), the different spatial concentration and the different line-of-sight distance (~5 pc) of the two populations. The observed 1-2 Myr age difference between the two populations is also naturally explained by our scenario, in which the two sub-clusters formed in two slightly different star formation episodes. Our simulations suggest that population B is strongly supervirial, while population A is close to virial equilibrium. We discuss the implications of our models for the formation of young star clusters and OB associations in the Milky Way.Comment: 12 pages, 7 figures, 2 tables, Astronomy and Astrophysics, in pres
    • …
    corecore