722 research outputs found

    Static and dynamic heterogeneities in irreversible gels and colloidal gelation

    Full text link
    We compare the slow dynamics of irreversible gels, colloidal gels, glasses and spin glasses by analyzing the behavior of the so called non-linear dynamical susceptibility, a quantity usually introduced to quantitatively characterize the dynamical heterogeneities. In glasses this quantity typically grows with the time, reaches a maximum and then decreases at large time, due to the transient nature of dynamical heterogeneities and to the absence of a diverging static correlation length. We have recently shown that in irreversible gels the dynamical susceptibility is instead an increasing function of the time, as in the case of spin glasses, and tends asymptotically to the mean cluster size. On the basis of molecular dynamics simulations, we here show that in colloidal gelation where clusters are not permanent, at very low temperature and volume fractions, i.e. when the lifetime of the bonds is much larger than the structural relaxation time, the non-linear susceptibility has a behavior similar to the one of the irreversible gel, followed, at higher volume fractions, by a crossover towards the behavior of glass forming liquids.Comment: 9 pages, 3 figure

    Dynamic fluctuations in ascending heart-to-brain communication under mental stress

    Get PDF
    Dynamical information exchange between central and autonomic nervous systems, as referred to functional brain-heart interplay, occurs during emotional and physical arousal. It is well documented that physical and mental stress lead to sympathetic activation. Nevertheless, the role of autonomic inputs in nervous system-wise communication under mental stress is yet unknown. In this study, we estimated the causal and bidirectional neural modulations between electroencephalogram (EEG) oscillations and peripheral sympathetic and parasympathetic activities using a recently proposed computational framework for a functional brain-heart interplay assessment, namely the sympathovagal synthetic data generation model. Mental stress was elicited in 37 healthy volunteers by increasing their cognitive demands throughout three tasks associated with increased stress levels. Stress elicitation induced an increased variability in sympathovagal markers, as well as increased variability in the directional brain-heart interplay. The observed heart-to-brain interplay was primarily from sympathetic activity targeting a wide range of EEG oscillations, whereas variability in the efferent direction seemed mainly related to EEG oscillations in the c band. These findings extend current knowledge on stress physiology, which mainly referred to top-down neural dynamics. Our results suggest that mental stress may not cause an increase in sympathetic activity exclusively as it initiates a dynamic fluctuation within brain-body networks including bidirectional interactions at a brain-heart level. We conclude that directional brain-heart interplay measurements may provide suitable biomarkers for a quantitative stress assessment and bodily feedback may modulate the perceived stress caused by increased cognitive demand

    Effects of Mass Media and Cultural Drift in a Model for Social Influence

    Full text link
    In the context of an extension of Axelrod's model for social influence, we study the interplay and competition between the cultural drift, represented as random perturbations, and mass media, introduced by means of an external homogeneous field. Unlike previous studies [J. C. Gonz\'alez-Avella {\it et al}, Phys. Rev. E {\bf 72}, 065102(R) (2005)], the mass media coupling proposed here is capable of affecting the cultural traits of any individual in the society, including those who do not share any features with the external message. A noise-driven transition is found: for large noise rates, both the ordered (culturally polarized) phase and the disordered (culturally fragmented) phase are observed, while, for lower noise rates, the ordered phase prevails. In the former case, the external field is found to induce cultural ordering, a behavior opposite to that reported in previous studies using a different prescription for the mass media interaction. We compare the predictions of this model to statistical data measuring the impact of a mass media vasectomy promotion campaign in Brazil.Comment: 10 pages, 3 figures; minor changes; added references. To appear in IJMP

    Tri-Resonant Leptogenesis

    Full text link
    We present a class of leptogenesis models where the light neutrinos acquire their observed mass through a symmetry-motivated construction. We consider an extension of the Standard Model, which includes three singlet neutrinos which have mass splittings comparable to their decay widths. We show that this tri-resonant structure leads to an appreciable increase in the observed CP asymmetry over that found previously in typical bi-resonant models. To analyse such tri-resonant scenarios, we solve a set of coupled Boltzmann equations, crucially preserving the variations in the relativistic degrees of freedom. We highlight the fact that small variations at high temperatures can have major implications for the evolution of the baryon asymmetry when the singlet neutrino mass scale is below 100100 GeV. We then illustrate how this variation can significantly affect the ability to find successful leptogenesis at these low masses. Finally, the parameter space for viable leptogenesis is delineated, and comparisons are made with current and future experiments.Comment: 16 pages, 5 figures, conference proceedings for Corfu Summer Institute 2022, School and Workshops on Elementary Particle Physics and Gravity, August 28 - September 8, 2022, Corfu, Greec

    Tri-Resonant Leptogenesis in a Seesaw Extension of the Standard Model

    Full text link
    We study a class of leptogenesis models where the light neutrinos acquire their observed small masses by a symmetry-motivated construction. This class of models may naturally include three nearly degenerate heavy Majorana neutrinos that can strongly mix with one another and have mass differences comparable to their decay widths. We find that such a tri-resonant heavy neutrino system can lead to leptonic CP asymmetries which are further enhanced than those obtained in the usual bi-resonant approximation. Moreover, we solve the Boltzmann equations by paying special attention to the temperature dependence of the relativistic degrees of freedom of the plasma. The latter results in significant corrections to the evolution equations for the heavy neutrinos and the lepton asymmetry that have been previously ignored in the literature. We show the importance of these corrections to accurately describe the dynamical evolution of the baryon-to-photon ratio ηB\eta_B for heavy neutrino masses at and below 100100 GeV, and demonstrate that successful leptogenesis at lower masses can be significantly affected by the variation of the relativistic dofs. The parameter space for the leptogenesis model is discussed, and it could be probed in future experimental facilities searching for charged lepton flavour violation and heavy neutrinos in future ZZ-boson factories.Comment: 42 pages, 10 figures, additional references included, inclusion of additional clarifying comments, to appear in JHE

    Contact processes with long-range interactions

    Full text link
    A class of non-local contact processes is introduced and studied using mean-field approximation and numerical simulations. In these processes particles are created at a rate which decays algebraically with the distance from the nearest particle. It is found that the transition into the absorbing state is continuous and is characterized by continuously varying critical exponents. This model differs from the previously studied non-local directed percolation model, where particles are created by unrestricted Levy flights. It is motivated by recent studies of non-equilibrium wetting indicating that this type of non-local processes play a role in the unbinding transition. Other non-local processes which have been suggested to exist within the context of wetting are considered as well.Comment: Accepted with minor revisions by Journal of Statistical Mechanics: Theory and experiment

    Spatial signal amplification in cell biology: a lattice-gas model for self-tuned phase ordering

    Full text link
    Experiments show that the movement of eukaryotic cells is regulated by a process of phase separation of two competing enzymes on the cell membrane, that effectively amplifies shallow external gradients of chemical attractant. Notably, the cell is able to self-tune the final enzyme concentrations to an equilibrium state of phase coexistence, for a wide range of the average attractant concentration. We propose a simple lattice model in which, together with a short-range attraction between enzymes, a long-range repulsion naturally arises from physical considerations, that easily explains such observed behavior

    Pacman percolation: a model for enzyme gel degradation

    Full text link
    We study a model for the gel degradation by an enzyme, where the gel is schematized as a cubic lattice, and the enzyme as a random walker, that cuts the bonds over which it passes. The model undergoes a (reverse) percolation transition, which for low density of enzymes falls in a universality class different from random percolation. In particular we have measured a gel fraction critical exponent beta=1.0+-0.1, in excellent agreement with experiments made on the real system.Comment: 4 pages, 7 eps figure

    The cryogenic system for the SLAC E158 experiment

    Get PDF
    E158 is a fixed target experiment at SLAC in which high energy (up to 48 GeV) polarized electrons are scattered off the unpolarized electrons in a 1.5 m long liquid hydrogen target. The total volume of liquid hydrogen in the system is 47.1. The beam can deposit as much as 700 W into the liquid hydrogen. Among the requirements for the system are: that density fluctuations in the liquid hydrogen be kept to a minimum, that the target can be moved out of the beam line while cold and replaced to within 2 mm and that the target survive lifetime radiation doses of up to 1×106 Gy. The cryogenic system for the experiment consists of the target itself, the cryostat containing the target, a refurbished CTI 4000 refrigerator providing more than 1 kW of cooling at 20 K and associated transfer lines and valve boxes. This paper discusses the requirements, design, construction, testing and operation of the cryogenic system. The unique features of the design associated with hydrogen safety and the high radiation field in which the target resides are also covered
    corecore