21,827 research outputs found

    Voronoi Cell Patterns: theoretical model and applications

    Full text link
    We use a simple fragmentation model to describe the statistical behavior of the Voronoi cell patterns generated by a set of points in 1D and in 2D. In particular, we are interested in the distribution of sizes of these Voronoi cells. Our model is completely defined by two probability distributions in 1D and again in 2D, the probability to add a new point inside an existing cell and the probability that this new point is at a particular position relative to the preexisting point inside this cell. In 1D the first distribution depends on a single parameter while the second distribution is defined through a fragmentation kernel; in 2D both distributions depend on a single parameter. The fragmentation kernel and the control parameters are closely related to the physical properties of the specific system under study. We use our model to describe the Voronoi cell patterns of several systems. Specifically, we study the island nucleation with irreversible attachment, the 1D car parking problem, the formation of second-level administrative divisions, and the pattern formed by the Paris M\'etro stations.Comment: 12 pages, 9 figure

    The role of excitons and trions on electron spin polarization in quantum wells

    Full text link
    We have studied the time evolution of the electron spin polarization under continuous photoexcitation in remotely n-doped semiconductor quantum wells. The doped region allows us to get the necessary excess of free electrons to form trions. We have considered electron resonant photoexcitation at free, exciton and trion electron energy levels. Also, we have studied the relative effect of photoexcitation energy density and doping concentration. In order to obtain the two-dimensional density evolution of the different species, we have performed dynamic calculations through the matrix density formalism. Our results indicate that photoexcitation of free electron level leads to a higher spin polarization. Also, we have found that increasing the photoexcitation energy or diminishing the doping enhances spin polarization.Comment: 30 pages, 11 figures, 1 tabl

    Nonlinear spin-polarized transport through a ferromagnetic domain wall

    Get PDF
    A domain wall separating two oppositely magnetized regions in a ferromagnetic semiconductor exhibits, under appropriate conditions, strongly nonlinear I-V characteristics similar to those of a p-n diode. We study these characteristics as functions of wall width and temperature. As the width increases or the temperature decreases, direct tunneling between the majority spin bands decreases the effectiveness of the diode. This has important implications for the zero-field quenched resistance of magnetic semiconductors and for the design of a recently proposed spin transistor.Comment: 5 pages, 3 figure

    S-PRAC: Fast Partial Packet Recovery with Network Coding in Very Noisy Wireless Channels

    Full text link
    Well-known error detection and correction solutions in wireless communications are slow or incur high transmission overhead. Recently, notable solutions like PRAC and DAPRAC, implementing partial packet recovery with network coding, could address these problems. However, they perform slowly when there are many errors. We propose S-PRAC, a fast scheme for partial packet recovery, particularly designed for very noisy wireless channels. S-PRAC improves on DAPRAC. It divides each packet into segments consisting of a fixed number of small RLNC encoded symbols and then attaches a CRC code to each segment and one to each coded packet. Extensive simulations show that S-PRAC can detect and correct errors quickly. It also outperforms DAPRAC significantly when the number of errors is high

    Complex permittivity of a biased superlattice

    Full text link
    Intersubband response in a superlattice subjected to a homogeneous electric field (biased superlattice with equipopulated levels) is studied within the tight-binding approximation, taking into account the interplay between homogeneous and inhomogeneous mechanisms of broadening. The complex dielectric permittivity is calculated beyond the Born approximation for a wide spectral region. A detectable gain below the resonance is obtained for the low-doped GaAsGaAs-based biased superlattice in the THz spectral region. Conditions of the stimulated emission regime for metallic and dielectric waveguide structures are discussed.Comment: 7 pages, 5 figure

    Trion dynamics in coupled double quantum wells. Electron density effects

    Full text link
    We have studied the coherent dynamics of injected electrons when they are either free or bounded both in excitons and in trions (charged excitons). We have considered a remotely doped asymmetric double quantum well where an excess of free electrons and the direct created excitons generate trions. We have used the matrix density formalism to analyze the electron dynamics for different concentration of the three species. Calculations show a significant modification of the free electron inter-sublevel oscillations cWe have studied the coherent dynamics of injected electrons when they are aused by electrons bound in excitons and trions. Based on the present calculations we propose a method to detect trions through the emitted electromagnetic radiation or the current density.Comment: 14 pages, 13 figure
    corecore