627 research outputs found
The arithmetic recursive average as an instance of the recursive weighted power mean
The aggregation of multiple information sources has a long history and ranges from sensor fusion to the aggregation of individual algorithm outputs and human knowledge. A popular approach to achieve such aggregation is the fuzzy integral (FI) which is defined with respect to a fuzzy measure (FM (i.e. a normal, monotone capacity). In practice, the discrete FI aggregates information contributed by a discrete number of sources through a weighted aggregation (post-sorting), where the weights are captured by a FM that models the typically subjective âworthâ of subsets of the overall set of sources. While the combination of FI and FM has been very successful, challenges remain both in regards to the behavior of the resulting aggregation operatorsâwhich for example do not produce symmetrically mirrored outputs for symmetrically mirrored inputsâand also in a manifest difference between the intuitive interpretation of a stand-alone FM and its actual role and impact when used as part of information fusion with a FI. This paper elucidates these challenges and introduces a novel family of recursive average (RAV) operators as an alternative to the FI in aggregation with respect to a FM; focusing specifically on the arithmetic recursive average. The RAV is designed to address the above challenges, while also facilitating fine-grained analysis of the resulting aggregation of different combinations of sources. We provide the mathematical foundations of the RAV and include initial experiments and comparisons to the FI for both numeric and interval-valued data
Data-informed fuzzy measures for fuzzy integration of intervals and fuzzy numbers
The fuzzy integral (FI) with respect to a fuzzy measure (FM) is a powerful means of aggregating information. The most popular FIs are the Choquet and Sugeno, and most research focuses on these two variants. The arena of the FM is much more populated, including numerically derived FMs such as the Sugeno λ-measure and decomposable measure, expert-defined FMs, and data-informed FMs. The drawback of numerically derived and expert-defined FMs is that one must know something about the relative values of the input sources. However, there are many problems where this information is unavailable, such as crowdsourcing. This paper focuses on data-informed FMs, or those FMs that are computed by an algorithm that analyzes some property of the input data itself, gleaning the importance of each input source by the data they provide. The original instantiation of a data-informed FM is the agreement FM, which assigns high confidence to combinations of sources that numerically agree with one another. This paper extends upon our previous work in datainformed FMs by proposing the uniqueness measure and additive measure of agreement for interval-valued evidence. We then extend data-informed FMs to fuzzy number (FN)-valued inputs. We demonstrate the proposed FMs by aggregating interval and FN evidence with the Choquet and Sugeno FIs for both synthetic and real-world data
Enabling Explainable Fusion in Deep Learning with Fuzzy Integral Neural Networks
Information fusion is an essential part of numerous engineering systems and
biological functions, e.g., human cognition. Fusion occurs at many levels,
ranging from the low-level combination of signals to the high-level aggregation
of heterogeneous decision-making processes. While the last decade has witnessed
an explosion of research in deep learning, fusion in neural networks has not
observed the same revolution. Specifically, most neural fusion approaches are
ad hoc, are not understood, are distributed versus localized, and/or
explainability is low (if present at all). Herein, we prove that the fuzzy
Choquet integral (ChI), a powerful nonlinear aggregation function, can be
represented as a multi-layer network, referred to hereafter as ChIMP. We also
put forth an improved ChIMP (iChIMP) that leads to a stochastic gradient
descent-based optimization in light of the exponential number of ChI inequality
constraints. An additional benefit of ChIMP/iChIMP is that it enables
eXplainable AI (XAI). Synthetic validation experiments are provided and iChIMP
is applied to the fusion of a set of heterogeneous architecture deep models in
remote sensing. We show an improvement in model accuracy and our previously
established XAI indices shed light on the quality of our data, model, and its
decisions.Comment: IEEE Transactions on Fuzzy System
Estimation of the Probability of Error without Ground Truth and Known A Priori Probabilities
The probability of error or, alternatively, the probability of correct classification (PCC) is an important criterion in analyzing the performance of a classifier. Labeled samples (those with ground truth) are usually employed to evaluate the performance of a classifier. Occasionally, the numbers of labeled samples are inadequate, or no labeled samples are available to evaluate a classifier\u27s performance; for example, when crop signatures from one area from which ground truth is available are used to classify another area from which no ground truth is available. This paper reports the results of an experiment to estimate the probability of error using unlabeled test samples (i.e., without the aid of ground truth)
Efficient modeling and representation of agreement in interval-valued data
Recently, there has been much research into effective representation and analysis of uncertainty in human responses, with applications in cyber-security, forest and wildlife management, and product development, to name a few. Most of this research has focused on representing the response uncertainty as intervals, e.g., âI give the movie between 2 and 4 stars.â In this paper, we extend upon the model-based interval agreement approach (IAA) for combining interval data into fuzzy sets and propose the efficient IAA (eIAA) algorithm, which enables efficient representation of and operation on the fuzzy sets produced by IAA (and other interval-based approaches, for that matter). We develop methods for efficiently modeling, representing, and aggregating both crisp and uncertain interval data (where the interval endpoints are intervals themselves). These intervals are assumed to be collected from individual or multiple survey respondents over single or repeated surveys; although, without loss of generality, the approaches put forth in this paper could be used for any interval-based data where representation and analysis is desired. The proposed method is designed to minimize loss of information when transferring the interval-based data into fuzzy set models and then when projecting onto a compressed set of basis functions. We provide full details of eIAA and demonstrate it on real-world and synthetic data
A bidirectional subsethood based similarity measure for fuzzy sets
Similarity measures are useful for reasoning about fuzzy sets. Hence, many classical set-theoretic similarity measures have been extended for comparing fuzzy sets. In previous work, a set-theoretic similarity measure considering the bidirectional subsethood for intervals was introduced. The measure addressed specific concerns of many common similarity measures, and it was shown to be bounded above and below by Jaccard and Dice measures respectively. Herein, we extend our prior measure from similarity on intervals to fuzzy sets. Specifically, we propose a vertical-slice extension where two fuzzy sets are compared based on their membership values.We show that the proposed extension maintains all common properties (i.e., reflexivity, symmetry, transitivity, and overlapping) of the original fuzzy similarity measure. We demonstrate and contrast its behaviour along with common fuzzy set-theoretic measures using different types of fuzzy sets (i.e., normal, non-normal, convex, and non-convex) in respect to different discretization levels
A Similarity Measure Based on Bidirectional Subsethood for Intervals
With a growing number of areas leveraging interval-valued dataâincluding in the context of modelling human uncertainty (e.g., in Cyber Security), the capacity to accurately and systematically compare intervals for reasoning and computation is increasingly important. In practice, well established set-theoretic similarity measures such as the Jaccard and SĂžrensen-Dice measures are commonly used, while axiomatically a wide breadth of possible measures have been theoretically explored. This paper identifies, articulates, and addresses an inherent and so far not discussed limitation of popular measuresâtheir tendency to be subject to aliasingâwhere they return the same similarity value for very different sets of intervals. The latter risks counter-intuitive results and poor automated reasoning in real-world applications dependent on systematically comparing interval-valued system variables or states. Given this, we introduce new axioms establishing desirable properties for robust similarity measures, followed by putting forward a novel set-theoretic similarity measure based on the concept of bidirectional subsethood which satisfies both the traditional and new axioms. The proposed measure is designed to be sensitive to the variation in the size of intervals, thus avoiding aliasing. The paper provides a detailed theoretical exploration of the new proposed measure, and systematically demonstrates its behaviour using an extensive set of synthetic and real-world data. Specifically, the measure is shown to return robust outputs that follow intuitionâessential for real world applications. For example, we show that it is bounded above and below by the Jaccard and SĂžrensen-Dice similarity measures (when the minimum t-norm is used). Finally, we show that a dissimilarity or distance measure, which satisfies the properties of a metric, can easily be derived from the proposed similarity measure
SPFI: shape-preserving Choquet fuzzy integral for non-normal fuzzy set-valued evidence
Information or data aggregation is an important part of nearly all analysis problems as summarizing inputs from multiple sources is a ubiquitous goal. In this paper we propose a method for non-linear aggregation of data inputs that take the form of non-normal fuzzy sets. The proposed shape-preserving fuzzy integral (SPFI) is designed to overcome a well-known weakness of the previously-proposed sub-normal fuzzy integral (SuFI). The weakness of SuFI is that the output is constrained to have maximum membership equal to the minimum of the maximum memberships of the inputs; hence, if one input has a small height, then the output is constrained to that height. The proposed SPFI does not suffer from this weakness and, furthermore, preserves in the output the shape of the input sets. That is, the output looks like the inputs. The SPFI method is based on the well-known Choquet fuzzy integral with respect to a capacity measure, i.e., fuzzy measure. We demonstrate SPFI on synthetic and real-world data, comparing it to the SuFI and non-direct fuzzy integral (NDFI)
Kernel Matrix-Based Heuristic Multiple Kernel Learning
Kernel theory is a demonstrated tool that has made its way into nearly all areas of machine learning. However, a serious limitation of kernel methods is knowing which kernel is needed in practice. Multiple kernel learning (MKL) is an attempt to learn a new tailored kernel through the aggregation of a set of valid known kernels. There are generally three approaches to MKL: fixed rules, heuristics, and optimization. Optimization is the most popular; however, a shortcoming of most optimization approaches is that they are tightly coupled with the underlying objective function and overfitting occurs. Herein, we take a different approach to MKL. Specifically, we explore different divergence measures on the values in the kernel matrices and in the reproducing kernel Hilbert space (RKHS). Experiments on benchmark datasets and a computer vision feature learning task in explosive hazard detection demonstrate the effectiveness and generalizability of our proposed methods
Novel similarity measure for interval-valued data based on overlapping ratio
In computing the similarity of intervals, current similarity measures such as the commonly used Jaccard and Dice measures are at times not sensitive to changes in the width of intervals, producing equal similarities for substantially different pairs of intervals. To address this, we propose a new similarity measure that uses a bi-directional approach to determine interval similarity. For each direction, the overlapping ratio of the given interval in a pair with the other interval is used as a measure of uni-directional similarity. We show that the proposed measure satisfies all common properties of a similarity measure, while also being invariant in respect to multiplication of the interval endpoints and exhibiting linear growth in respect to linearly increasing overlap. Further, we compare the behavior of the proposed measure with the highly popular Jaccard and Dice similarity measures, highlighting that the proposed approach is more sensitive to changes in interval widths. Finally, we show that the proposed similarity is bounded by the Jaccard and the Dice similarity, thus providing a reliable alternative
- âŠ