117 research outputs found

    Investigating the mass-ratio dependence of the prompt-collapse threshold with numerical-relativity simulations

    Get PDF
    The next observing runs of advanced gravitational-wave detectors will lead to a variety of binary neutron star detections and numerous possibilities for multi-messenger observations of binary neutron star systems. In this context a clear understanding of the merger process and the possibility of prompt black hole formation after merger is important, as the amount of ejected material strongly depends on the merger dynamics. These dynamics are primarily affected by the total mass of the binary, however, the mass ratio also influences the postmerger evolution. To determine the effect of the mass ratio, we investigate the parameter space around the prompt-collapse threshold with a new set of fully relativistic simulations. The simulations cover three equations of state and seven mass ratios in the range of 1.0≀q≀1.751.0 \leq q \leq 1.75, with five to seven simulations of binary systems of different total mass in each case. The threshold mass is determined through an empirical relation based on the collapse-time, which allows us to investigate effects of the mass-ratio on the threshold mass and also on the properties of the remnant system. Furthermore, we model effects of mass ratio and equation of state on tidal parameters of threshold configurations

    Ill-posedness in the Einstein equations

    Get PDF
    It is shown that the formulation of the Einstein equations widely in use in numerical relativity, namely, the standard ADM form, as well as some of its variations (including the most recent conformally-decomposed version), suffers from a certain but standard type of ill-posedness. Specifically, the norm of the solution is not bounded by the norm of the initial data irrespective of the data. A long-running numerical experiment is performed as well, showing that the type of ill-posedness observed may not be serious in specific practical applications, as is known from many numerical simulations.Comment: 13 pages, 3 figures, accepted for publication in Journal of Mathematical Physics (to appear August 2000

    High-accuracy simulations of highly spinning binary neutron star systems

    Get PDF
    With an increasing number of expected gravitational-wave detections of binary neutron star mergers, it is essential that gravitational-wave models employed for the analysis of observational data are able to describe generic compact binary systems. This includes systems in which the individual neutron stars are millisecond pulsars for which spin effects become essential. In this work, we perform numerical-relativity simulations of binary neutron stars with aligned and anti-aligned spins within a range of dimensionless spins of χ∌[−0.28,0.58]\chi \sim [-0.28,0.58]. The simulations are performed with multiple resolutions, show a clear convergence order and, consequently, can be used to test existing waveform approximants. We find that for very high spins gravitational-wave models that have been employed for the interpretation of GW170817 and GW190425 are not capable of describing our numerical-relativity dataset. We verify through a full parameter estimation study in which clear biases in the estimate of the tidal deformability and effective spin are present. We hope that in preparation of the next gravitational-wave observing run of the Advanced LIGO and Advanced Virgo detectors our new set of numerical-relativity data can be used to support future developments of new gravitational-wave models

    Regularization of the Hamiltonian constraint and the closure of the constraint algebra

    Full text link
    In the paper we discuss the process of regularization of the Hamiltonian constraint in the Ashtekar approach to quantizing gravity. We show in detail the calculation of the action of the regulated Hamiltonian constraint on Wilson loops. An important issue considered in the paper is the closure of the constraint algebra. The main result we obtain is that the Poisson bracket between the regulated Hamiltonian constraint and the Diffeomorphism constraint is equal to a sum of regulated Hamiltonian constraints with appropriately redefined regulating functions.Comment: 23 pages, epsfig.st

    Comparisons of binary black hole merger waveforms

    Get PDF
    This a particularly exciting time for gravitational wave physics. Ground-based gravitational wave detectors are now operating at a sensitivity such that gravitational radiation may soon be directly detected, and recently several groups have independently made significant breakthroughs that have finally enabled numerical relativists to solve the Einstein field equations for coalescing black-hole binaries, a key source of gravitational radiation. The numerical relativity community is now in the position to begin providing simulated merger waveforms for use by the data analysis community, and it is therefore very important that we provide ways to validate the results produced by various numerical approaches. Here, we present a simple comparison of the waveforms produced by two very different, but equally successful approaches--the generalized harmonic gauge and the moving puncture methods. We compare waveforms of equal-mass black hole mergers with minimal or vanishing spins. The results show exceptional agreement for the final burst of radiation, with some differences attributable to small spins on the black holes in one case.Comment: Revtex 4, 5 pages. Published versio

    A fast stroboscopic spectral method for rotating systems in numerical relativity

    Full text link
    We present a numerical technique for solving evolution equations, as the wave equation, in the description of rotating astrophysical compact objects in comoving coordinates, which avoids the problems associated with the light cylinder. The technique implements a fast spectral matching between two domains in relative rotation: an inner spherical domain, comoving with the sources and lying strictly inside the light cylinder, and an outer inertial spherical shell. Even though the emphasis is placed on spectral techniques, the matching is independent of the specific manner in which equations are solved inside each domain, and can be adapted to different schemes. We illustrate the strategy with some simple but representative examples.Comment: 16 pages, 15 figure

    Finite, diffeomorphism invariant observables in quantum gravity

    Full text link
    Two sets of spatially diffeomorphism invariant operators are constructed in the loop representation formulation of quantum gravity. This is done by coupling general relativity to an anti- symmetric tensor gauge field and using that field to pick out sets of surfaces, with boundaries, in the spatial three manifold. The two sets of observables then measure the areas of these surfaces and the Wilson loops for the self-dual connection around their boundaries. The operators that represent these observables are finite and background independent when constructed through a proper regularization procedure. Furthermore, the spectra of the area operators are discrete so that the possible values that one can obtain by a measurement of the area of a physical surface in quantum gravity are valued in a discrete set that includes integral multiples of half the Planck area. These results make possible the construction of a correspondence between any three geometry whose curvature is small in Planck units and a diffeomorphism invariant state of the gravitational and matter fields. This correspondence relies on the approximation of the classical geometry by a piecewise flat Regge manifold, which is then put in correspondence with a diffeomorphism invariant state of the gravity-matter system in which the matter fields specify the faces of the triangulation and the gravitational field is in an eigenstate of the operators that measure their areas.Comment: Latex, no figures, 30 pages, SU-GP-93/1-

    Covariant quantization of membrane dynamics

    Get PDF
    A Lorentz covariant quantization of membrane dynamics is defined, which also leaves unbroken the full three dimensional diffeomorphism invariance of the membrane. Among the applications studied are the reduction to string theory, which may be understood in terms of the phase space and constraints, and the interpretation of physical,zero-energy states. A matrix regularization is defined as in the light cone gauged fixed theory but there are difficulties implementing all the gauge symmetries. The problem involves the non-area-preserving diffeomorphisms which are realized non-linearly in the classical theory. In the quantum theory they do not seem to have a consistent implementation for finite N. Finally, an approach to a genuinely background independent formulation of matrix dynamics is briefly described.Comment: Latex, 21 pages, no figure

    Generic Tracking of Multiple Apparent Horizons with Level Flow

    Get PDF
    We report the development of the first apparent horizon locator capable of finding multiple apparent horizons in a ``generic'' numerical black hole spacetime. We use a level-flow method which, starting from a single arbitrary initial trial surface, can undergo topology changes as it flows towards disjoint apparent horizons if they are present. The level flow method has two advantages: 1) The solution is independent of changes in the initial guess and 2) The solution can have multiple components. We illustrate our method of locating apparent horizons by tracking horizon components in a short Kerr-Schild binary black hole grazing collision.Comment: 13 pages including figures, submitted to Phys Rev

    Accurate evolutions of inspiralling neutron-star binaries: assessment of the truncation error

    Full text link
    We have recently presented an investigation in full general relativity of the dynamics and gravitational-wave emission from binary neutron stars which inspiral and merge, producing a black hole surrounded by a torus (see arXiv:0804.0594). We here discuss in more detail the convergence properties of the results presented in arXiv:0804.0594 and, in particular, the deterioration of the convergence rate at the merger and during the survival of the merged object, when strong shocks are formed and turbulence develops. We also show that physically reasonable and numerically convergent results obtained at low-resolution suffer however from large truncation errors and hence are of little physical use. We summarize our findings in an "error budget", which includes the different sources of possible inaccuracies we have investigated and provides a first quantitative assessment of the precision in the modelling of compact fluid binaries.Comment: 13 pages, 5 figures. Minor changes to match published version. Added figure 5 right pane
    • 

    corecore