32 research outputs found

    Mammalian NADH:ubiquinone oxidoreductase (Complex I) and nicotinamide nucleotide transhydrogenase (Nnt) together regulate the mitochondrial production of H2O2—Implications for their role in disease, especially cancer

    Full text link

    Nucleotide binding affinites of the intact proton-trans locating transhydrogenase from Escherichia coli

    Get PDF
    AbstractTranshydrogenase (E.C. 1.6.1.1) couples the redox reaction between NAD(H) and NADP(H) to the transport of protons across a membrane. The enzyme is composed of three components. The dI and dIII components, which house the binding site for NAD(H) and NADP(H), respectively, are peripheral to the membrane, and dII spans the membrane. We have estimated dissociation constants (Kd values) for NADPH (0.87 μM), NADP+ (16 μM), NADH (50 μM), and NAD+ (100–500 μM) for intact, detergent-dispersed transhydrogenase from Escherichia coli using micro-calorimetry. This is the first complete set of dissociation constants of the physiological nucleotides for any intact transhydrogenase. The Kd values for NAD+ and NADH are similar to those previously reported with isolated dI, but the Kd values for NADP+ and NADPH are much larger than those previously reported with isolated dIII. There is negative co-operativity between the binding sites of the intact, detergent-dispersed transhydrogenase when both nucleotides are reduced or both are oxidised

    Preliminary electrochemical studies of the flavohaemoprotein from Ralstonia eutropha entrapped in a film of methyl cellulose: activation of the reduction of dioxygen

    No full text
    A flavohaemoprotein (FHP) from Ralstonia eutropha, obtained in a pure and active form, has been entrapped in a film of methyl cellulose on the electrode surface and gives a stable and reproducible electrochemical response at pH 7.00 when subject to cyclic voltammetry using a glassy carbon electrode. To our knowledge, no previous direct electrochemistry had been achieved with a bacterial flavohaemoglobin, which possess both a FAD and a haem. A single couple is observed which is assigned to the haem moiety of the protein, since the same result is obtained with a semi-apo form of the protein deprived of FAD (semi-apo FHP). The data collected were further confirmed by potentiometry with a platinum electrode, and the homogeneous electron transfer rate estimated by double potential step chronocoulometry at a bare glassy carbon electrode in the presence of methyl viologen (MV). The presence of FAD in the holoprotein is easily confirmed by UV–Vis spectrophotometry, but its expected electron relay role remains elusive. The protein activates the reduction of dioxygen by about 400 mV, the reduction current being proportional to the concentration of dioxygen up to 10% in volume in the gas mixture

    trans Arachidonic acid isomers inhibit NADPH-oxidase activity by direct interaction with enzyme components

    No full text
    NADPH-oxidase is an enzyme that represents, when activated, the major source of non-mitochondrial reactive oxygen species. In phagocytes, this production is an indispensable event for the destruction of engulfed pathogens. The functional NADPH-oxidase complex consists of a catalytic membrane flavocytochrome b (Cytb558) and four cytosolic proteins p47 phox, p67phox, Rac and p40phox. The NADPH-oxidase activity is finely regulated spatially and temporally by cellular signaling events that trigger the translocation of the cytosolic subunits to its membrane partner involving post-translational modifications and activation by second messengers such as arachidonic acid (AA). Arachidonic acid in its natural cis-poly unsaturated form (C20:4) has been described to be an efficient activator of the enzyme in vivo and in vitro. In this work, we examined in a cell-free system whether a change of the natural cis geometry to the trans configuration, which could occur either by diet or be produced by the action of free radicals, may have consequences on the functioning of NADPH-oxidase. We showed the inability of mono-trans AA isomers to activate the NADPH-oxidase complex and demonstrated the inhibitory effect on the cis-AA-induced NADPH oxidase activation. The inhibition is mediated by a direct effect of the mono-trans AA which targets both the membrane fraction containing the cytb 558 and the cytosolic p67phox. Our results suggest that the loss of the natural geometric feature (cis-AA) induces substantial structural modifications of p67phox that prevent its translocation to the complex. © 2012 Elsevier B.V. All rights reserved
    corecore