11 research outputs found

    Comparative clinical study of the effectiveness of different dental bleaching methods - two year follow-up

    Get PDF
    This study evaluated color change, stability, and tooth sensitivity in patients submitted to different bleaching techniques. MATERIAL AND METHODS: In this study, 48 patients were divided into five groups. A half-mouth design was conducted to compare two in-office bleaching techniques (with and without light activation): G1: 35% hydrogen peroxide (HP) (Lase Peroxide - DMC Equipments, São Carlos, SP, Brazil) + hybrid light (HL) (LED/Diode Laser, Whitening Lase II DMC Equipments, São Carlos, SP, Brazil); G2: 35% HP; G3: 38% HP (X-traBoost - Ultradent, South Jordan UT, USA) + HL; G4: 38% HP; and G5: 15% carbamide peroxide (CP) (Opalescence PF - Ultradent, South Jordan UT, USA). For G1 and G3, HP was applied on the enamel surface for 3 consecutive applications activated by HL. Each application included 3x3' HL activations with 1' between each interval; for G2 and G4, HP was applied 3x15' with 15' between intervals; and for G5, 15% CP was applied for 120'/10 days at home. A spectrophotometer was used to measure color change before the treatment and after 24 h, 1 week, 1, 6, 12, 18 and 24 months. A VAS questionnaire was used to evaluate tooth sensitivity before the treatment, immediately following treatment, 24 h after and finally 1 week after. RESULTS: Statistical analysis did not reveal any significant differences between in-office bleaching with or without HL activation related to effectiveness; nevertheless the time required was less with HL. Statistical differences were observed between the results after 24 h, 1 week and 1, 6, 12, 18 and 24 months (intergroup). Immediately, in-office bleaching increased tooth sensitivity. The groups activated with HL required less application time with gel. CONCLUSION: All techniques and bleaching agents used were effective and demonstrated similar behaviors

    Chemical Composition and Microhardness of Human Enamel Treated with Fluoridated Whintening Agents. A Study in Situ

    No full text
    BACKGROUND: Dental whitening has been increasingly sought out to improve dental aesthetics, but may cause chemical and morphological changes in dental enamel surfaces. OBJECTIVE: Assess in situ the effects of high-concentration hydrogen peroxide with and without fluoride on human dental enamel using the ion chromatography test (IC) and the Knoop hardness test (KHN). MATERIAL AND METHODS: Nineteen enamel specimens were prepared using third human molars. These specimens were fixed on molars of volunteers and were divided into groups: OP38-Opalescence Boost PF38%, PO37-Pola Office 37.5% and CO-Control group. For chemical analysis (n= 3), the dentin layer was removed, keeping only the enamel, which was subjected to acidic digestion by microwave radiation. It was necessary to perform sample dilutions for the elements fluorine (F), calcium (Ca) and phosphorus (P) for quantification using the IC test. The KHN (n= 5) was performed before and after the treatments. Five indentations were made, separated by 100 µm, for each specimen using a load of 25 gf for 5 seconds in the microdurometer. The data were analyzed using ANOVA with a 5% significance level. RESULTS: The OP38 group had the largest concentrations of F, Ca and P ions. The PO37 group showed the lowest concentrations of F and Ca ions. The average KHN was not significantly different between the OP38 and PO37 groups. CONCLUSION: Enamel whitened with hydrogen peroxide containing fluoride had greater concentrations of F, Ca and P ions. The presence of fluoride in the whitening agent did not influence the enamel microhardness

    Spectroscopic Study of Human Teeth and Blood from Visible to Terahertz Frequencies for Clinical Diagnosis of Dental Pulp Vitality

    No full text
    Transmission spectra of wet human teeth and dentin slices, together with blood of different flow rates were investigated. The measurements carried out over a wide spectral range, from visible light down to terahertz radiation. The results make it possible to find the optimum light frequency for an all-optical determination of pulpal blood flow and, consequently, for clinically diagnosis of tooth vitality

    Influence of Fluoride Concentration and pH Value of 35% Hydrogen Peroxide on the Hardness, Roughness and Morphology of Bovine Enamel

    No full text

    Effects of Two Antioxidants on the Microleakage of Resin-Based Composite Restorations after Nonvital Bleaching

    No full text

    In situ Effect of Nanohydroxyapatite Paste in Enamel Teeth Bleaching

    No full text
    Federal University of Para. Department of Restorative Dentistry. Belem, PA, Brazil.Federal University of Para. Department of Restorative Dentistry. Belem, PA, Brazil.Federal University of Para. Department of Restorative Dentistry. Belem, PA, Brazil.Federal University of Para. Department of Restorative Dentistry. Belem, PA, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Departamento de Toxicologia. Ananindeua, PA, Brasil.Federal University of Para. Department of Restorative Dentistry. Belem, PA, Brazil.AIM: Evaluate in situ the effect of nanohydroxyapatite paste (nano-HAP) before bleaching with hydrogen peroxide 35% (HP35%) by ion chromatography (IC) Knoop hardness number (KHN) and tristimulus colorimetry (TC). MATERIALS AND METHODS: A total of 60 fragments were obtained from third molars included (3 mm × 3 mm × 3 mm) and the specimens were divided into three groups (n = 20): Gas chromatography (CG) (negative control group) = no bleaching; HP35% (positive control group) = HP35% whitening (whiteness HP35%); nano-HAP = application for 10 minutes before bleaching treatment + HP35%. The specimens were fixed to the volunteers' molars. The KHN and TC were measured before and after bleaching. For IC, the dentin layer was removed, leaving the enamel that was crushed, and autoclaved for chemical quantification (calcium, fluorine, and phosphorus). The results of KHN and TC were analyzed statistically by analysis of variance (ANOVA) followed by Tukey test (p < 0.05). RESULTS: The HP35% group showed reduction of the Ca, F, and P ions. The initial and final KHN mean of the CG and nano-HAP did not differ statistically; however, the group of HP35% did differ statistically. The mean ΔE of the HP35% and nano-HAP groups did not differ statistically from each other. However, they differed from the CG. CONCLUSION: The nano-HAP paste preserved the KHN, promoted the lower loss of Ca and P ions and an increase of F ions when compared with the CG, but did not influence the effectiveness of the bleaching treatment. CLINICAL SIGNIFICANCE: Nano-HA is a biomaterial that has shown positive results in the prevention of deleterious effects on the enamel by the action of the office bleaching treatment
    corecore