195 research outputs found

    Structural disorder, magnetism, and electrical and thermoelectric properties of pyrochlore Nd2Ru2O7

    Full text link
    Polycrystalline Nd2Ru2O7 samples have been prepared and examined using a combination of structural, magnetic, and electrical and thermal transport studies. Analysis of synchrotron X-ray and neutron diffraction patterns suggests some site disorder on the A-site in the pyrochlore sublattice: Ru substitutes on the Nd-site up to 7.0(3)%, regardless of the different preparative conditions explored. Intrinsic magnetic and electrical transport properties have been measured. Ru 4d spins order antiferromagnetically at 143 K as seen both in susceptibility and specific heat, and there is a corresponding change in the electrical resistivity behaviour. A second antiferromagnetic ordering transition seen below 10 K is attributed to ordering of Nd 4f spins. Nd2Ru2O7 is an electrical insulator, and this behaviour is believed to be independent of the Ru-antisite disorder on the Nd site. The electrical properties of Nd2Ru2O7 are presented in the light of data published on all A2Ru2O7 pyrochlores, and we emphasize the special structural role that Bi3+ ions on the A-site play in driving metallic behaviour. High-temperature thermoelectric properties have also been measured. When considered in the context of known thermoelectric materials with useful figures-of-merit, it is clear that Nd2Ru2O7 has excessively high electrical resistivity which prevents it from being an effective thermoelectric. A method for screening candidate thermoelectrics is suggested.Comment: 19 pages, 10 figure

    On The Injection Spectrum of Ultrahigh Energy Cosmic Rays in the Top-Down Scenario

    Full text link
    We analyze the uncertainties involved in obtaining the injection spectra of UHECR particles in the top-down scenario of their origin. We show that the DGLAP Q2Q^2 evolution of fragmentation functions (FF) to Q=MXQ=M_X (mass of the X particle) from their initial values at low QQ is subject to considerable uncertainties. We therefore argue that, for x\lsim 0.1 (the xx region of interest for most large MXM_X values of interest, x2E/MXx\equiv 2E/M_X being the scaled energy variable), the FF obtained from DGLAP evolution is no more reliable than that provided, for example, by a simple Gaussian form (in the variable ln(1/x)\ln(1/x)) obtained under the Modified Leading Log Approximation (MLLA). Additionally, we find that for x\gsim0.1, the evolution in Q2Q^2 of the singlet FF, which determines the injection spectrum, is ``minimal'' -- the singlet FF changes by barely a factor of 2 after evolving it over \sim 14 orders of magnitude in QMXQ\sim M_X. We, therefore, argue that as long as the measurement of the UHECR spectrum above \sim10^{20}\ev is going to remain uncertain by a factor of 2 or larger, it is good enough for most practical purposes to directly use any one of the available initial parametrisations of the FFs in the xx region x\gsim0.1 based on low energy data even without evolving them to the requisite Q2Q^2 value.Comment: Minor changes, added a reference, version to appear in Phys. Rev.

    Unstable superheavy relic particles as a source of neutrinos responsible for the ultrahigh-energy cosmic rays

    Full text link
    Decays of superheavy relic particles may produce extremely energetic neutrinos. Their annihilations on the relic neutrinos can be the origin of the cosmic rays with energies beyond the Greisen-Zatsepin-Kuzmin cutoff. The red shift acts as a cosmological filter selecting the sources at some particular value z_e, for which the present neutrino energy is close to the Z pole of the annihilation cross section. We predict no directional correlation of the ultrahigh-energy cosmic rays with the galactic halo. At the same time, there can be some directional correlations in the data, reflecting the distribution of matter at red shift z=z_e. Both of these features are manifest in the existing data. Our scenario is consistent with the neutrino mass reported by Super-Kamiokande and requires no lepton asymmetry or clustering of the background neutrinos.Comment: 3 pages, revtex; references adde

    Neutrino cross sections at high energies and the future observations of ultrahigh-energy cosmic rays

    Full text link
    We show that future detectors of ultrahigh-energy cosmic-ray neutrinos will be able to measure neutrino-nucleon cross section at energies as high as 10^{11}GeV or higher. We find that the flux of up-going charged leptons per unit surface area produced by neutrino interactions below the surface is inversely proportional to the cross section. This contrasts with the rate of horizontal air showers (HAS) due to neutrino interactions in the atmosphere, which is proportional to the cross section. Thus, by comparing the HAS and up-going air shower (UAS) rates, the neutrino-nucleon cross section can be inferred. Taken together, up-going and horizontal rates ensure a healthy total event rate, regardless of the value of the cross section.Comment: 4 pages, 2 figures, revtex; final draf

    Superheavy Dark Matter and Thermal Inflation

    Get PDF
    The thermal inflation is the most plausible mechanism that solves the cosmological moduli problem naturally. We discuss relic abundance of superheavy particle XX in the presence of the thermal inflation assuming that its lifetime is longer than the age of the universe, and show that the long-lived particle XX of mass 101210^{12}--101410^{14} GeV may form a part of the dark matter in the present universe in a wide region of parameter space of the thermal inflation model. The superheavy dark matter of mass 1013\sim 10^{13} GeV may be interesting in particular, since its decay may account for the observed ultra high-energy cosmic rays if the lifetime of the XX particle is sufficiently long.Comment: 13 pages (RevTex file) including 8 figures, revised version to be published in Physical Review

    Lorentz invariance violation in top-down scenarios of ultrahigh energy cosmic ray creation

    Full text link
    The violation of Lorentz invariance (LI) has been invoked in a number of ways to explain issues dealing with ultrahigh energy cosmic ray (UHECR) production and propagation. These treatments, however, have mostly been limited to examples in the proton-neutron system and photon-electron system. In this paper we show how a broader violation of Lorentz invariance would allow for a series of previously forbidden decays to occur, and how that could lead to UHECR primaries being heavy baryonic states or Higgs bosons.Comment: Replaced with heavily revised (see new Abstract) version accepted by Phys. Rev. D. 6 page

    Quintessence Restrictions on Negative Power and Condensate Potentials

    Full text link
    We study the cosmological evolution of scalar fields that arise from a phase transition at some energy scale \Lm_c. We focus on negative power potentials given by V=c\Lm_c^{4+n}\phi^{-n} and restrict the cosmological viable values of \Lm_c and nn. We make a complete analysis of VV and impose SN1aSN1a conditions on the different cosmological parameters. The cosmological observations ruled out models where the scalar field has reached its attractor solution. For models where this is not the case, the analytic approximated solutions are not good enough to determine whether a specific model is phenomenologically viable or not and the full differential equations must be numerically solved. The results are not fine tuned since a change of 45% on the initial conditions does not spoil the final results. We also determine the values of Nc,NfN_c, N_f that give a condensation scale \Lm_c consistent with gauge coupling unification, leaving only four models that satisfy unification and SN1a constraints.Comment: 15 pages, LaTeX, 8 Figures. Minor changes in text, a discussion on initial conditions added (accepted in Phys.Rev.D

    Air fluorescence measurements in the spectral range 300-420 nm using a 28.5 GeV electron beam

    Full text link
    Measurements are reported of the yield and spectrum of fluorescence, excited by a 28.5 GeV electron beam, in air at a range of pressures of interest to ultra-high energy cosmic ray detectors. The wavelength range was 300 - 420 nm. System calibration has been performed using Rayleigh scattering of a nitrogen laser beam. In atmospheric pressure dry air at 304 K the yield is 20.8 +/- 1.6 photons per MeV.Comment: 29 pages, 10 figures. Submitted to Astroparticle Physic

    Natural Quintessence with Gauge Coupling Unification

    Full text link
    We show that a positive accelerating universe can be obtained simply by the dynamics of a non-abelian gauge group. It is the condensates of the chiral fields that obtain a negative power potential, below the condensation scale, and allow for a quintessence interpretation of these fields. The only free parameters in this model are NcN_c and NfN_f and the number of dynamically gauge singlet bilinear fields ϕ\phi generated below the condensation scale. We show that it is possible to have unification of all coupling constants, including the standard and non standard model couplings, while having an acceptable phenomenology of ϕ\phi as the cosmological constant. This is done without any fine tuning of the initial conditions. The problem of coincidence (why the universe has only recently started an accelerating period) is not solved but it is put at the same level as what the particle content of the standard model is.Comment: minor changes(discussion on field normalization included), reference added, accepted in Phy.Rev.Lett., 5 pages,LateX,2 Figure

    Long-Lived Superheavy Particles in Dynamical Supersymmetry-Breaking Models in Supergravity

    Full text link
    Superheavy particles of masses 10131014GeV\simeq 10^{13}-10^{14} GeV with lifetimes 10101022years\simeq 10^{10}-10^{22} years are very interesting, since their decays may account for the ultra-high energy (UHE) cosmic rays discovered beyond the Greisen-Zatsepin-Kuzmin cut-off energy E5×1010GeVE \sim 5 \times 10^{10} GeV. We show that the presence of such long-lived superheavy particles is a generic prediction of QCD-like SU(N_c) gauge theories with N_f flavors of quarks and antiquarks and the large number of colors N_c. We construct explicit models based on supersymmetric SU(N_c) gauge theories and show that if the dynamical scale Λ10131014GeV\Lambda \simeq 10^{13}-10^{14} GeV and N_c = 6-10 the lightest composite baryons have the desired masses and lifetimes to explain the UHE cosmic rays. Interesting is that in these models the gaugino condensation necessarily occurs and hence these models may play a role of so-called hidden sector for supersymmetry breaking in supergravity.Comment: 13 pages, Late
    corecore