906 research outputs found

    Geometry of random interactions

    Get PDF
    It is argued that spectral features of quantal systems with random interactions can be given a geometric interpretation. This conjecture is investigated in the context of two simple models: a system of randomly interacting d bosons and one of randomly interacting fermions in a j=7/2 shell. In both examples the probability for a given state to become the ground state is shown to be related to a geometric property of a polygon or polyhedron which is entirely determined by particle number, shell size, and symmetry character of the states. Extensions to more general situations are discussed

    Regular spectra in the vibron model with random interactions

    Get PDF
    The phenomenom of emerging regular spectral features from random interactions is addressed in the context of the vibron model. A mean-field analysis links different regions of the parameter space with definite geometric shapes. The results that are, to a large extent, obtained in closed analytic form, provide a clear and transparent interpretation of the high degree of order that has been observed in numerical studies.Comment: 19 pages, 8 figures, 2 tables. Physical Review C, in pres

    Angular momentum I ground state probabilities of boson systems interacting by random interactions

    Full text link
    In this paper we report our systematic calculations of angular momentum II ground state probabilities (P(I)P(I)) of boson systems with spin ll in the presence of random two-body interactions. It is found that the P(0) dominance is usually not true for a system with an odd number of bosons, while it is valid for an even number of bosons, which indicates that the P(0) dominance is partly connected to the even number of identical particles. It is also noticed that the P(Imax)P(I_{max})'s of bosons with spin ll do not follow the 1/N (N=l+1N=l+1, referring to the number of independent two-body matrix elements) relation. The properties of the P(I)P(I)'s obtained in boson systems with spin ll are discussed.Comment: 8 pages and 3 figure

    Generic Rotation in a Collective SD Nucleon-Pair Subspace

    Full text link
    Low-lying collective states involving many nucleons interacting by a random ensemble of two-body interactions (TBRE) are investigated in a collective SD-pair subspace, with the collective pairs defined dynamically from the two-nucleon system. It is found that in this truncated pair subspace collective vibrations arise naturally for a general TBRE hamiltonian whereas collective rotations do not. A hamiltonian restricted to include only a few randomly generated separable terms is able to produce collective rotational behavior, as long as it includes a reasonably strong quadrupole-quadrupole component. Similar results arise in the full shell model space. These results suggest that the structure of the hamiltonian is key to producing generic collective rotation.Comment: 11 pages, 5 figure

    Many-body Systems Interacting via a Two-body Random Ensemble (I): Angular Momentum distribution in the ground states

    Full text link
    In this paper, we discuss the angular momentum distribution in the ground states of many-body systems interacting via a two-body random ensemble. Beginning with a few simple examples, a simple approach to predict P(I)'s, angular momenta I ground state (g.s.) probabilities, of a few solvable cases, such as fermions in a small single-j shell and d boson systems, is given. This method is generalized to predict P(I)'s of more complicated cases, such as even or odd number of fermions in a large single-j shell or a many-j shell, d-boson, sd-boson or sdg-boson systems, etc. By this method we are able to tell which interactions are essential to produce a sizable P(I) in a many-body system. The g.s. probability of maximum angular momentum ImaxI_{max} is discussed. An argument on the microscopic foundation of our approach, and certain matrix elements which are useful to understand the observed regularities, are also given or addressed in detail. The low seniority chain of 0 g.s. by using the same set of two-body interactions is confirmed but it is noted that contribution to the total 0 g.s. probability beyond this chain may be more important for even fermions in a single-j shell. Preliminary results by taking a displaced two-body random ensemble are presented for the I g.s. probabilities.Comment: 39 pages and 8 figure

    Spectroscopy with random and displaced random ensembles

    Full text link
    Due to the time reversal invariance of the angular momentum operator J^2, the average energies and variances at fixed J for random two-body Hamiltonians exhibit odd-even-J staggering, that may be especially strong for J=0. It is shown that upon ensemble averaging over random runs, this behaviour is reflected in the yrast states. Displaced (attractive) random ensembles lead to rotational spectra with strongly enhanced BE2 transitions for a certain class of model spaces. It is explained how to generalize these results to other forms of collectivity.Comment: 4 pages, 4 figure

    Spin Structure of Many-Body Systems with Two-Body Random Interactions

    Get PDF
    We investigate the spin structure of many-fermion systems with a spin-conserving two-body random interaction. We find a strong dominance of spin-0 ground states and considerable correlations between energies and wave functions of low-lying states with different spin, but no indication of pairing. The spectral densities exhibit spin-dependent shapes and widths, and depend on the relative strengths of the spin-0 and spin-1 couplings in the two-body random matrix. The spin structure of low-lying states can largely be explained analytically.Comment: 10 pages, including 3 figure

    Baryons in O(4) and Vibron Model

    Get PDF
    The structure of the reported excitation spectra of the light unflavored baryons is described in terms of multi-spin valued Lorentz group representations of the so called Rarita-Schwinger (RS) type (K/2, K/2)* [(1/ 2,0)+ (0,1/2)] with K=1,3, and 5. We first motivate legitimacy of such pattern as fundamental fields as they emerge in the decomposition of triple fermion constructs into Lorentz representations. We then study the baryon realization of RS fields as composite systems by means of the quark version of the U(4) symmetric diatomic rovibron model. In using the U(4)/ O(4)/ O(3)/ O(2) reduction chain, we are able to reproduce quantum numbers and mass splittings of the above resonance assemblies. We present the essentials of the four dimensional angular momentum algebra and construct electromagnetic tensor operators. The predictive power of the model is illustrated by ratios of reduced probabilities concerning electric de-excitations of various resonances to the nucleon.Comment: Phys. Rev. D (in press, 2001

    Review of the k-Body Embedded Ensembles of Gaussian Random Matrices

    Full text link
    The embedded ensembles were introduced by Mon and French as physically more plausible stochastic models of many--body systems governed by one--and two--body interactions than provided by standard random--matrix theory. We review several approaches aimed at determining the spectral density, the spectral fluctuation properties, and the ergodic properties of these ensembles: moments methods, numerical simulations, the replica trick, the eigenvector decomposition of the matrix of second moments and supersymmetry, the binary correlation approximation, and the study of correlations between matrix elements.Comment: Final version. 29 pages, 4 ps figures, uses iopart.st
    • …
    corecore