211 research outputs found

    Open-closed string correspondence: D-brane decay in curved space

    Get PDF
    This paper analyzes the effect of curved closed string backgrounds on the stability of D-branes within boundary string field theory. We identify the non-local open string background that implements shifts in the closed string background and analyze the tachyonic sector off-shell. The renormalization group flow reveals some characteristic properties, which are expected for a curved background, like the absence of a stable space-filling brane. In 3-dimensions we describe tachyon condensation processes to lower-dimensional branes, including a curved 2-dimensional brane. We argue that this 2-brane is perturbatively stable. This is in agreement with the known maximally symmetric WZW-branes and provides further support to the bulk-boundary factorization approach to open-closed string correspondence.Comment: 23 pages, harvma

    Site-specific climate analysis elucidates revegetation challenges for post-mining landscapes in eastern Australia

    Get PDF
    In eastern Australia, the availability of water is critical for the successful rehabilitation of post-mining landscapes and climatic characteristics of this diverse geographical region are closely defined by factors such as erratic rainfall and periods of drought and flooding. Despite this, specific metrics of climate patterning are seldom incorporated into the initial design of current post-mining land rehabilitation strategies. Our study proposes that a few common rainfall parameters can be combined and rated using arbitrary rainfall thresholds to characterise bioregional climate sensitivity relevant to the rehabilitation these landscapes. This approach included assessments of annual rainfall depth, average recurrence interval of prolonged low intensity rainfall, average recurrence intervals of short or prolonged high intensity events, median period without rain (or water-deficit) and standard deviation for this period in order to address climatic factors such as total water availability, seasonality and intensity – which were selected as potential proxies of both short- and long-term biological sensitivity to climate within the context of post-disturbance ecological development and recovery. Following our survey of available climate data, we derived site "climate sensitivity" indexes and compared the performance of 9 ongoing mine sites: Weipa, Mt. Isa and Cloncurry, Eromanga, Kidston, the Bowen Basin (Curragh), Tarong, North Stradbroke Island, and the Newnes Plateau. The sites were then ranked from most-to-least sensitive and compared with natural bioregional patterns of vegetation density using mean NDVI. It was determined that regular rainfall and relatively short periods of water-deficit were key characteristics of sites having less sensitivity to climate – as found among the relatively more temperate inland mining locations. Whereas, high rainfall variability, frequently occurring high intensity events, and (or) prolonged seasonal drought were primary indicators of sites having greater sensitivity to climate – as found among the semi-arid central-inland sites. Overall, the manner in which these climatic factors are identified and ultimately addressed by land managers and rehabilitation practitioners could be a key determinant of achievable success at given locations at the planning stages of rehabilitation design

    Manifestly Supersymmetric RG Flows

    Full text link
    Renormalisation group (RG) equations in two-dimensional N=1 supersymmetric field theories with boundary are studied. It is explained how a manifestly N=1 supersymmetric scheme can be chosen, and within this scheme the RG equations are determined to next-to-leading order. We also use these results to revisit the question of how brane obstructions and lines of marginal stability appear from a world-sheet perspective.Comment: 22 pages; references added, minor change

    Ultrashort pulse formation and evolution in mode-locked fiber lasers

    Get PDF
    Passive mode-locking in fiber lasers is investigated by numerical and experimental means. A non-distributed scalar model solving the nonlinear Schrödinger equation is implemented to study the starting behavior and intra-cavity dynamics numerically. Several operation regimes at positive net-cavity dispersion are experimentally accessed and studied in different environmentally stable, linear laser configurations. In particular, pulse formation and evolution in the chirped-pulse regime at highly positive cavity dispersion is discussed. Based on the experimental results a route to highly energetic pulse solutions is shown in numerical simulations. © 2011 Springer-Verlag

    In Search of Patient Zero: Visual Analytics of Pathogen Transmission Pathways in Hospitals

    Get PDF
    Pathogen outbreaks (i.e., outbreaks of bacteria and viruses) in hospitals can cause high mortality rates and increase costs for hospitals significantly. An outbreak is generally noticed when the number of infected patients rises above an endemic level or the usual prevalence of a pathogen in a defined population. Reconstructing transmission pathways back to the source of an outbreak -- the patient zero or index patient -- requires the analysis of microbiological data and patient contacts. This is often manually completed by infection control experts. We present a novel visual analytics approach to support the analysis of transmission pathways, patient contacts, the progression of the outbreak, and patient timelines during hospitalization. Infection control experts applied our solution to a real outbreak of Klebsiella pneumoniae in a large German hospital. Using our system, our experts were able to scale the analysis of transmission pathways to longer time intervals (i.e., several years of data instead of days) and across a larger number of wards. Also, the system is able to reduce the analysis time from days to hours. In our final study, feedback from twenty-five experts from seven German hospitals provides evidence that our solution brings significant benefits for analyzing outbreaks

    Remarks on quiver gauge theories from open topological string theory

    Get PDF
    We study effective quiver gauge theories arising from a stack of D3-branes on certain Calabi-Yau singularities. Our point of view is a first principle approach via open topological string theory. This means that we construct the natural A-infinity-structure of open string amplitudes in the associated D-brane category. Then we show that it precisely reproduces the results of the method of brane tilings, without having to resort to any effective field theory computations. In particular, we prove a general and simple formula for effective superpotentials

    Properties of a microjoule-class fiber oscillator mode-locked with a SESAM

    Get PDF
    Energy scaling of ultrafast Yb-doped fiber oscillators has experienced rapid progress largely driven by many applications that require high average power femtosecond pulses. The fundamental challenge for ultrafast fiber lasers relies on the control of excessive nonlinearity, which limits pulse energy. The development of all-normal dispersion laser cavities based on large-mode-area photonic crystal fibers (PCFs) has enabled significant energy scaling [1-3]. In particular, up to microjoule energy levels have been achieved from rod-type fiber-based oscillators [2-3]. In such lasers, pulse shaping is dominated by the strength of the mode-locking mechanism which determines the pulse properties. In this contribution, we report the generation of high-energy sub-picosecond pulses from a highly normal dispersion fiber laser featuring an Yb-doped rod-type PCF and a large-mode-area PCF [Fig.1(a)]. Passive mode-locking is achieved using saturable absorber mirrors (SAMs). We study the influence of the SAM parameters on performances obtained in this new class of fiber oscillators. The structures exhibit 20 % modulation depths and 500 fs relaxation time with resonant and antiresonant designs. The antiresonant SAM structures ensure absorption bandwidths 45 nm while the resonant structures exhibit 20 nm bandwidths. Stable mode locking with average powers as high as 15 μW at 15 MHz repetition rate, corresponding to microjoule energy level are obtained with all the structures. However, pulse properties and pulse shaping mechanism distinguish between resonant and antiresonant designs. Using a broadband antiresonant SAM leads to generation of highly-chirped pulses with 30 ps duration and 10 nm spectral width [Fig.1(b)]. The output pulses are extra-cavity dechirped down to 550 fs duration. By increasing the strength of the mode-locking mechanism through the combination of the SAM with the NPE process, we obtain shorter pulses with slightly boarder spectra. Indeed, the output pulse duration is decreased from 30 ps to 13 ps by adjusting the wave-plates settings. The dechirped pulse duration is then shortened to 450 fs. We note that the current laser performances are limited to 1 J by the available pump power. Using a resonant SAM structure, the output pulse duration is decreased to 7 ps [Fig.1(b)]. This pulse shortening results from the spectral filtering induced by the limited SAM bandwidth. All these results are in good agreement with numerical simulations which will be discussed in this communication. © 2011 IEEE

    Measuring every particle's size from three-dimensional imaging experiments

    Full text link
    Often experimentalists study colloidal suspensions that are nominally monodisperse. In reality these samples have a polydispersity of 4-10%. At the level of an individual particle, the consequences of this polydispersity are unknown as it is difficult to measure an individual particle size from microscopy. We propose a general method to estimate individual particle radii within a moderately concentrated colloidal suspension observed with confocal microscopy. We confirm the validity of our method by numerical simulations of four major systems: random close packing, colloidal gels, nominally monodisperse dense samples, and nominally binary dense samples. We then apply our method to experimental data, and demonstrate the utility of this method with results from four case studies. In the first, we demonstrate that we can recover the full particle size distribution {\it in situ}. In the second, we show that accounting for particle size leads to more accurate structural information in a random close packed sample. In the third, we show that crystal nucleation occurs in locally monodisperse regions. In the fourth, we show that particle mobility in a dense sample is correlated to the local volume fraction.Comment: 7 pages, 5 figure

    Sub-picosecond microjoule-class fiber lasers

    Get PDF
    We study the impact of the mode-locking mechanism on the performances of a microjoule-class all-normal dispersion fiber laser featuring large-mode-area photonic crystal fibers. © 2011 OSA
    corecore