15 research outputs found

    Axenic culture of Brachionus plicatilis using antibiotics

    Get PDF
    The rotifer Brachionus plicatilis culture is composed of complex microcosms including bacteria, protozoans, algae, and fungi. Previous studies reported methods to establish axenic rotifer cultures, but further refinement of these techniques is needed, for molecular biological research which requires pure culture to isolate nucleic acids from rotifers only. In order to render rotifer culture axenic, we tested five antibiotics: ampicillin (Amp), chloramphenicol (Cp), kanamycin (Km), nalidixic acid (Na), and streptomycin (Sm) at 30-100 μg/ml. Except for Cp, which reduces rotifer reproduction, all other antibiotics at the tested concentrations did not affect rotifer reproduction or show any toxic effects. A rotifer disinfection method was finally established by treating the resting eggs with 0.25% (w/v) sodium hypochlorite (NaOCl) for 3 min, washing with sterilized sea water, and then exposing the neonates to an Amp, Km, Na, and Sm mixture. Using four nutrient media, we confirmed that this protocol renders the rotifer culture bacterial and fungus free. The axenic rotifer culture generated here is useful not only for genetic analysis of Brachionus plicatilis, but for studying the rotifer life cycle without bacterial influence

    Novel lung imaging biomarkers and skin gene expression subsetting in dasatinib treatment of systemic sclerosis-associated interstitial lung disease

    Get PDF
    There are no effective treatments or validated clinical response markers in systemic sclerosis (SSc). We assessed imaging biomarkers and performed gene expression profiling in a single-arm open-label clinical trial of tyrosine kinase inhibitor dasatinib in patients with SSc-associated interstitial lung disease (SSc-ILD).Primary objectives were safety and pharmacokinetics. Secondary outcomes included clinical assessments, quantitative high-resolution computed tomography (HRCT) of the chest, serum biomarker assays and skin biopsy-based gene expression subset assignments. Clinical response was defined as decrease of >5 or >20% from baseline in the modified Rodnan Skin Score (MRSS). Pulmonary function was assessed at baseline and day 169.Dasatinib was well-tolerated in 31 patients receiving drug for a median of nine months. No significant changes in clinical assessments or serum biomarkers were seen at six months. By quantitative HRCT, 65% of patients showed no progression of lung fibrosis, and 39% showed no progression of total ILD. Among 12 subjects with available baseline and post-treatment skin biopsies, three were improvers and nine were non-improvers. Improvers mapped to the fibroproliferative or normal-like subsets, while seven out of nine non-improvers were in the inflammatory subset (p = 0.0455). Improvers showed stability in forced vital capacity (FVC) and diffusing capacity for carbon monoxide (DLCO), while both measures showed a decline in non-improvers (p = 0.1289 and p = 0.0195, respectively). Inflammatory gene expression subset was associated with higher baseline HRCT score (p = 0.0556). Non-improvers showed significant increase in lung fibrosis (p = 0.0313).In patients with SSc-ILD dasatinib treatment was associated with acceptable safety profile but no significant clinical efficacy. Patients in the inflammatory gene expression subset showed increase in skin fibrosis, decreasing pulmonary function and worsening lung fibrosis during the study. These findings suggest that target tissue-specific gene expression analyses can help match patients and therapeutic interventions in heterogeneous diseases such as SSc, and quantitative HRCT is useful for assessing clinical outcomes.Clinicaltrials.gov NCT00764309
    corecore