601 research outputs found

    Rapamycin-loaded polymeric nanoparticles as an advanced formulation for macrophage targeting in atherosclerosis

    Get PDF
    Recently, rapamycin (Rapa) represents a potential drug treatment to induce regression of atherosclerotic plaques; however, its use requires site-specific accumulation in the vessels involved in the formation of the plaques to avoid the systemic effects resulting from its indiscriminate biodistribution. In this work, a stable pharmaceutical formulation for Rapa was realized as a dried powder to be dispersed extemporaneously before administration. The latter was constituted by man-nitol (Man) as an excipient and a Rapa-loaded polymeric nanoparticle carrier. These nanoparticles were obtained by nanoprecipitation and using as a starting polymeric material a polycaprolactone (PCL)/α,β-poly(N-2-hydroxyethyl)-DL-aspartamide (PHEA) graft copolymer. To obtain nanoparti-cles targeted to macrophages, an oxidized phospholipid with a high affinity for the CD36 receptor of macrophages, the 1-(palmitoyl)-2-(5-keto-6-octene-dioyl) phosphatidylcholine (KOdia-PC), was added to the starting organic phase. The chemical–physical and technological characterization of the obtained nanoparticles demonstrated that: both the drug loading (DL%) and the entrapment efficiency (EE%) entrapped drug are high; the entrapped drug is in the amorphous state, protected from degradation and slowly released from the polymeric matrix; and the KOdia-PC is on the nanoparticle surface (KP-Nano). The biological characterization demonstrated that both systems are quickly internalized by macrophages while maintaining the activity of the drug. In vitro studies demonstrated that the effect of KP-Nano Rapa-loaded, in reducing the amount of the Phospo-Ser757-ULK1 protein through the inhibition of the mammalian target of rapamycin (mTOR), is comparable to that of the free drug

    Chedoke Arm and Hand Activity Inventory-9 (CAHAI-9): Perceived clinical utility within 14 days of stroke

    Get PDF
    Purpose: The Chedoke Arm and Hand Activity Inventory-9 (CAHAI-9) is an activity-based assessment developed to include relevant functional tasks and to be sensitive to clinically important changes in upper limb function. The aim of this study was to explore both therapists' and clients' views on the clinical utility of CAHAI-9 within 14 days of stroke. Method: Twenty-one occupational therapists actively working in stroke settings were recruited by convenience sampling from 8 hospitals and participated in semistructured focus groups. Five clients within 14 days of stroke were recruited by consecutive sampling from 1 metropolitan hospital and participated in structured individual interviews. The transcripts were analyzed thematically. Results: Six themes emerged from the focus groups and interviews: collecting information, decisions regarding client suitability, administration and scoring, organizational demands, raising awareness, and clients' perceptions of CAHAI-9 utility. All therapists agreed CAHAI-9 was suited for the stroke population and assisted identification of client abilities or difficulties within functional contexts. Opinions varied as to whether CAHAI-9 should be routinely administered with clients who had mild and severe upper limb deficits, but therapists agreed it was appropriate for clients with moderate deficits. Therapists made suggestions regarding refinement of the scoring and training to increase utility. All clients with stroke felt that the assessment provided reassurance regarding their recovery. Conclusion: The findings indicate that CAHAI-9 shows promise as an upper limb ability assessment for clients within 14 days of stroke

    Pregnancy, Proteinuria, Plant-Based Supplemented Diets and Focal Segmental Glomerulosclerosis: A Report on Three Cases and Critical Appraisal of the Literature.

    Get PDF
    Chronic kidney disease (CKD) is increasingly recognized in pregnant patients. Three characteristics are associated with a risk of preterm delivery or small for gestational age babies; kidney function reduction, hypertension, and proteinuria. In pregnancy, the anti-proteinuric agents (ACE–angiotensin converting enzyme-inhibitors or ARBS -angiotensin receptor blockers) have to be discontinued for their potential teratogenicity, and there is no validated approach to control proteinuria. Furthermore, proteinuria usually increases as an effect of therapeutic changes and pregnancy-induced hyperfiltration. Based on a favourable effect of low-protein diets on proteinuria and advanced CKD, our group developed a moderately protein-restricted vegan-vegetarian diet tsupplemented with ketoacids and aminoacids for pregnant patients. This report describes the results obtained in three pregnant patients with normal renal function, nephrotic or sub-nephrotic proteinuria, and biopsy proven diagnosis of focal segmental glomerulosclerosis, a renal lesion in which hyperfiltration is considered of pivotal importance (case 1: GFR (glomerular filtration rate): 103 mL/min; proteinuria 2.1 g/day; albumin 3.2 g/dL; case 2: GFR 86 mL/min, proteinuria 3.03 g/day, albumin 3.4 g/dL; case 3: GFR 142 mL/min, proteinuria 6.3 g/day, albumin 3.23 g/dL). The moderately restricted diet allowed a stabilisation of proteinuria in two cases and a decrease in one. No significant changes in serum creatinine and serum albumin were observed. The three babies were born at term (38 weeks + 3 days, female, weight 3180 g-62th centile; 38 weeks + 2 days, female, weight 3300 g-75th centile; male, 38 weeks + 1 day; 2770 g-8th centile), thus reassuring us of the safety of the diet. In summary, based on these three cases studies and a review of the literature, we suggest that a moderately protein-restricted, supplemented, plant-based diet might contribute to controlling proteinuria in pregnant CKD women with focal segmental glomerulosclerosis. However further studies are warranted to confirm the potential value of such a treatment strategy

    Novel tricyclic pyrrolo-quinolines as pharmacological correctors of the mutant CFTR chloride channel

    Get PDF
    F508del, the most frequent mutation in cystic fibrosis (CF), impairs the stability and folding of the CFTR chloride channel, thus resulting in intracellular retention and CFTR degradation. The F508del defect can be targeted with pharmacological correctors, such as VX-809 and VX-445, that stabilize CFTR and improve its trafficking to plasma membrane. Using a functional test to evaluate a panel of chemical compounds, we have identified tricyclic pyrrolo-quinolines as novel F508del correctors with high efficacy on primary airway epithelial cells from CF patients. The most effective compound, PP028, showed synergy when combined with VX-809 and VX-661 but not with VX-445. By testing the ability of correctors to stabilize CFTR fragments of different length, we found that VX-809 is effective on the amino-terminal portion of the protein that includes the first membrane-spanning domain (amino acids 1-387). Instead, PP028 and VX-445 only show a stabilizing effect when the second membrane-spanning domain is included (amino acids 1-1181). Our results indicate that tricyclic pyrrolo-quinolines are a novel class of CFTR correctors that, similarly to VX-445, interact with CFTR at a site different from that of VX-809. Tricyclic pirrolo-quinolines may represent novel CFTR correctors suitable for combinatorial pharmacological treatments to treat the basic defect in CF

    Segmentation of diagnostic tissue compartments on whole slide images with renal thrombotic microangiopathies (TMAs)

    Full text link
    The thrombotic microangiopathies (TMAs) manifest in renal biopsy histology with a broad spectrum of acute and chronic findings. Precise diagnostic criteria for a renal biopsy diagnosis of TMA are missing. As a first step towards a machine learning- and computer vision-based analysis of wholes slide images from renal biopsies, we trained a segmentation model for the decisive diagnostic kidney tissue compartments artery, arteriole, glomerulus on a set of whole slide images from renal biopsies with TMAs and Mimickers (distinct diseases with a similar nephropathological appearance as TMA like severe benign nephrosclerosis, various vasculitides, Bevacizumab-plug glomerulopathy, arteriolar light chain deposition disease). Our segmentation model combines a U-Net-based tissue detection with a Shifted windows-transformer architecture to reach excellent segmentation results for even the most severely altered glomeruli, arterioles and arteries, even on unseen staining domains from a different nephropathology lab. With accurate automatic segmentation of the decisive renal biopsy compartments in human renal vasculopathies, we have laid the foundation for large-scale compartment-specific machine learning and computer vision analysis of renal biopsy repositories with TMAs.Comment: 12 pages, 3 figure

    Methyl 2-((2 Z

    Get PDF

    Synthesis of YVO4:Eu3+/YBO3Heteronanostructures with Enhanced Photoluminescence Properties

    Get PDF
    Novel YVO4:Eu3+/YBO3core/shell heteronanostructures with different shell ratios (SRs) were successfully prepared by a facile two-step method. X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy were used to characterize the heteronanostructures. Photoluminescence (PL) study reveals that PL efficiency of the YVO4:Eu3+nanocrystals (cores) can be improved by the growth of YBO3nanocoatings onto the cores to form the YVO4:Eu3+/YBO3core/shell heteronanostructures. Furthermore, shell ratio plays a critical role in their PL efficiency. The heteronanostructures (SR = 1/7) exhibit the highest PL efficiency; its PL intensity of the5D0–7F2emission at 620 nm is 27% higher than that of the YVO4:Eu3+nanocrystals under the same conditions

    A novel patient-derived tumorgraft model with TRAF1-ALK anaplastic large-cell lymphoma translocation.

    Get PDF
    Although anaplastic large-cell lymphomas (ALCL) carrying anaplastic lymphoma kinase (ALK) have a relatively good prognosis, aggressive forms exist. We have identified a novel translocation, causing the fusion of the TRAF1 and ALK genes, in one patient who presented with a leukemic ALK+ ALCL (ALCL-11). To uncover the mechanisms leading to high-grade ALCL, we developed a human patient-derived tumorgraft (hPDT) line. Molecular characterization of primary and PDT cells demonstrated the activation of ALK and nuclear factor kB (NFkB) pathways. Genomic studies of ALCL-11 showed the TP53 loss and the in vivo subclonal expansion of lymphoma cells, lacking PRDM1/Blimp1 and carrying c-MYC gene amplification. The treatment with proteasome inhibitors of TRAF1-ALK cells led to the downregulation of p50/p52 and lymphoma growth inhibition. Moreover, a NFkB gene set classifier stratified ALCL in distinct subsets with different clinical outcome. Although a selective ALK inhibitor (CEP28122) resulted in a significant clinical response of hPDT mice, nevertheless the disease could not be eradicated. These data indicate that the activation of NFkB signaling contributes to the neoplastic phenotype of TRAF1-ALK ALCL. ALCL hPDTs are invaluable tools to validate the role of druggable molecules, predict therapeutic responses and implement patient specific therapies

    Effects of a robot-assisted training of grasp and pronation/supination in chronic stroke: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rehabilitation of hand function is challenging, and only few studies have investigated robot-assisted rehabilitation focusing on distal joints of the upper limb. This paper investigates the feasibility of using the <it>HapticKnob</it>, a table-top end-effector device, for robot-assisted rehabilitation of grasping and forearm pronation/supination, two important functions for activities of daily living involving the hand, and which are often impaired in chronic stroke patients. It evaluates the effectiveness of this device for improving hand function and the transfer of improvement to arm function.</p> <p>Methods</p> <p>A single group of fifteen chronic stroke patients with impaired arm and hand functions (Fugl-Meyer motor assessment scale (FM) 10-45/66) participated in a 6-week 3-hours/week rehabilitation program with the <it>HapticKnob</it>. Outcome measures consisted primarily of the FM and Motricity Index (MI) and their respective subsections related to distal and proximal arm function, and were assessed at the beginning, end of treatment and in a 6-weeks follow-up.</p> <p>Results</p> <p>Thirteen subjects successfully completed robot-assisted therapy, with significantly improved hand and arm motor functions, demonstrated by an average 3.00 points increase on the FM and 4.55 on the MI at the completion of the therapy (4.85 FM and 6.84 MI six weeks post-therapy). Improvements were observed both in distal and proximal components of the clinical scales at the completion of the study (2.00 FM wrist/hand, 2.55 FM shoulder/elbow, 2.23 MI hand and 4.23 MI shoulder/elbow). In addition, improvements in hand function were observed, as measured by the Motor Assessment Scale, grip force, and a decrease in arm muscle spasticity. These results were confirmed by motion data collected by the robot.</p> <p>Conclusions</p> <p>The results of this study show the feasibility of this robot-assisted therapy with patients presenting a large range of impairment levels. A significant homogeneous improvement in both hand and arm function was observed, which was maintained 6 weeks after end of the therapy.</p
    corecore