5 research outputs found

    Epidemiology of Subpatent Plasmodium Falciparum Infection: Implications for Detection of Hotspots with Imperfect Diagnostics.

    Get PDF
    At the local level, malaria transmission clusters in hotspots, which may be a group of households that experience higher than average exposure to infectious mosquitoes. Active case detection often relying on rapid diagnostic tests for mass screen and treat campaigns has been proposed as a method to detect and treat individuals in hotspots. Data from a cross-sectional survey conducted in north-western Tanzania were used to examine the spatial distribution of Plasmodium falciparum and the relationship between household exposure and parasite density. Dried blood spots were collected from consenting individuals from four villages during a survey conducted in 2010. These were analysed by PCR for the presence of P. falciparum, with the parasite density of positive samples being estimated by quantitative PCR. Household exposure was estimated using the distance-weighted PCR prevalence of infection. Parasite density simulations were used to estimate the proportion of infections that would be treated using a screen and treat approach with rapid diagnostic tests (RDT) compared to targeted mass drug administration (tMDA) and Mass Drug Administration (MDA). Polymerase chain reaction PCR analysis revealed that of the 3,057 blood samples analysed, 1,078 were positive. Mean distance-weighted PCR prevalence per household was 34.5%. Parasite density was negatively associated with transmission intensity with the odds of an infection being subpatent increasing with household exposure (OR 1.09 per 1% increase in exposure). Parasite density was also related to age, being highest in children five to ten years old and lowest in those > 40 years. Simulations of different tMDA strategies showed that treating all individuals in households where RDT prevalence was above 20% increased the number of infections that would have been treated from 43 to 55%. However, even with this strategy, 45% of infections remained untreated. The negative relationship between household exposure and parasite density suggests that DNA-based detection of parasites is needed to provide adequate sensitivity in hotspots. Targeting MDA only to households with RDT-positive individuals may allow a larger fraction of infections to be treated. These results suggest that community-wide MDA, instead of screen and treat strategies, may be needed to successfully treat the asymptomatic, subpatent parasite reservoir and reduce transmission in similar settings

    Persistent ICT Malaria P.f/P.v Panmalarial and HRP2 Antigen Reactivity after Treatment of Plasmodium falciparum Malaria Is Associated with Gametocytemia and Results in False-Positive Diagnoses of Plasmodium vivax in Convalescence

    Get PDF
    A problem with rapid Plasmodium falciparum-specific antigen histidine-rich protein 2 (HRP2) detection tests for malaria is the persistence of antigen in blood after the disappearance of asexual-stage parasitemia and clinical symptoms, resulting in false-positive (FP) test results following treatment. The ICT P.f/P.v immunochromatographic test detects both HRP2 and a panmalarial antigen (PMA) found in both P. falciparum and Plasmodium vivax. To examine posttreatment antigen persistence with this test and whether persistent sexual-stage forms (gametocytes) are a cause of FP tests after treatment, we compared serial antigen test results with microscopy results from patients symptomatic with P. falciparum malaria in Indonesia for 28 days following treatment with chloroquine (CQ; n = 66), sulfadoxine-pyrimethamine (SP; n = 36), and artesunate plus sulfadoxine-pyrimethamine (ART + SP; n = 15). Persistent FP antigenemia following SP treatment occurred in 29% (HRP2) and 42% (PMA) of the patients on day 7 and in 10% (HRP2) and 23% (PMA) on day 14. The high rates of persistent HRP2 and PMA antigenemia following CQ and SP treatment were strongly associated with the presence of gametocytemia, with the proportion with gametocytes on day 7 posttreatment being significantly greater in those with FP results than in those with true-negative PMA and HRP2 results. Gametocyte frequency on day 14 post-SP treatment was also greater in those with FP PMA results. Following SP treatment, PMA persisted longer than HRP2, giving an FP diagnosis of P. vivax in up to 16% of patients on day 14, with all FP P. vivax diagnoses having gametocytemia. In contrast, PMA was rapidly cleared following ART + SP treatment in association with rapid clearance of gametocytemia. Gametocytes appear to be an important cause of persistent posttreatment panmalarial antigenemia in areas of endemicity and may also contribute in part to persistent HRP2 antigenemia following treatment
    corecore