1,486 research outputs found

    A Limit on the Polarized Anisotropy of the Cosmic Microwave Background at Subdegree Angular Scales

    Full text link
    A ground-based polarimeter, PIQUE, operating at 90 GHz has set a new limit on the magnitude of any polarized anisotropy in the cosmic microwave background. The combination of the scan strategy and full width half maximum beam of 0.235 degrees gives broad window functions with average multipoles, l = 211+294-146 and l = 212+229-135 for the E- and B-mode window functions, respectively. A joint likelihood analysis yields simultaneous 95% confidence level flat band power limits of 14 and 13 microkelvin on the amplitudes of the E- and B-mode angular power spectra, respectively. Assuming no B-modes, a 95% confidence limit of 10 microkelvin is placed on the amplitude of the E-mode angular power spectrum alone.Comment: 4 pages, 3 figures, submitted to Astrophysical Journal Letter

    Joint Bayesian component separation and CMB power spectrum estimation

    Get PDF
    We describe and implement an exact, flexible, and computationally efficient algorithm for joint component separation and CMB power spectrum estimation, building on a Gibbs sampling framework. Two essential new features are 1) conditional sampling of foreground spectral parameters, and 2) joint sampling of all amplitude-type degrees of freedom (e.g., CMB, foreground pixel amplitudes, and global template amplitudes) given spectral parameters. Given a parametric model of the foreground signals, we estimate efficiently and accurately the exact joint foreground-CMB posterior distribution, and therefore all marginal distributions such as the CMB power spectrum or foreground spectral index posteriors. The main limitation of the current implementation is the requirement of identical beam responses at all frequencies, which restricts the analysis to the lowest resolution of a given experiment. We outline a future generalization to multi-resolution observations. To verify the method, we analyse simple models and compare the results to analytical predictions. We then analyze a realistic simulation with properties similar to the 3-yr WMAP data, downgraded to a common resolution of 3 degree FWHM. The results from the actual 3-yr WMAP temperature analysis are presented in a companion Letter.Comment: 23 pages, 16 figures; version accepted for publication in ApJ -- only minor changes, all clarifications. More information about the WMAP3 analysis available at http://www.astro.uio.no/~hke under the Research ta

    G55.0+0.3: A Highly Evolved Supernova Remnant

    Full text link
    Multi-frequency analysis has revealed the presence of a new supernova remnant, G55.0+0.3, in the Galactic plane. A kinematic distance of 14 kpc has been measured from HI spectral line data. The faint, clumpy half-shell is non-thermal and has a physical radius of 70 pc. Using an evolutionary model, the age of the remnant is estimated to be on the order of one million years, which exceeds conventional limits by a factor of five. The remnant may be associated with the nearby pulsar J1932+2020, which has a spin-down age of 1.1 million years. This work implies that the radiative lifetimes of remnants could be much longer than previously suggested.Comment: 27 pages, 7 figures in 9 files (figures 1 and 2 require 2 files each), Accepted for publication in The Astrophysical Journal (Jan. 20, 1998 volume

    Determining Foreground Contamination in CMB Observations: Diffuse Galactic Emission in the MAXIMA-I Field

    Full text link
    Observations of the CMB can be contaminated by diffuse foreground emission from sources such as Galactic dust and synchrotron radiation. In these cases, the morphology of the contaminating source is known from observations at different frequencies, but not its amplitude at the frequency of interest for the CMB. We develop a technique for accounting for the effects of such emission in this case, and for simultaneously estimating the foreground amplitude in the CMB observations. We apply the technique to CMB data from the MAXIMA-1 experiment, using maps of Galactic dust emission from combinations of IRAS and DIRBE observations, as well as compilations of Galactic synchrotron emission observations. The spectrum of the dust emission over the 150--450 GHz observed by MAXIMA is consistent with preferred models but the effect on CMB power spectrum observations is negligible.Comment: 19 pages, 8 figures, accepted for publication in the Astrophysical Journal. Monor changes to match the published versio

    National geological screening : East Anglia region

    Get PDF
    This report is the published product of one of a series of studies covering England, Wales and Northern Ireland commissioned by Radioactive Waste Management (RWM) Ltd. The report provides geological information about the East Anglia region to underpin the process of national geological screening set out in the UK’s government White Paper Implementing geological disposal: a framework for the long-term management of higher activity radioactive waste (DECC, 2014). The report describes geological features relevant to the safety requirements of a geological disposal facility (GDF) for radioactive waste emplaced onshore and up to 20 km offshore at depths between 200 and 1000 m from surface. It is written for a technical audience but is intended to inform RWM in its discussions with communities interested in finding out about the potential for their area to host a GDF

    National geological screening : London and the Thames Valley

    Get PDF
    This report is the published product of one of a series of studies covering England, Wales and Northern Ireland commissioned by Radioactive Waste Management (RWM) Ltd. The report provides geological information about the London and the Thames Valley region to underpin the process of national geological screening set out in the UK Government’s White Paper Implementing geological disposal: a framework for the long-term management of higher activity radioactive waste (DECC, 2014). The report describes geological features relevant to the safety requirements of a geological disposal facility (GDF) for radioactive waste emplaced onshore and up to 20 km offshore at depths between 200 and 1000 m from surface. It is written for a technical audience but is intended to inform RWM in its discussions with communities interested in finding out about the potential for their area to host a GDF

    A Faraday Rotation Search for Magnetic Fields in Large Scale Structure

    Full text link
    Faraday rotation of radio source polarization provides a measure of the integrated magnetic field along the observational lines of sight. We compare a new, large sample of Faraday rotation measures (RMs) of polarized extragalactic sources with galaxy counts in Hercules and Perseus-Pisces, two nearby superclusters. We find that the average of RMs in these two supercluster areas are larger than in control areas in the same galactic latitude range. This is the first RM detection of magnetic fields that pervade a supercluster volume, in which case the fields are at least partially coherent over several megaparsecs. Even the most conservative interpretation of our observations, according to which Milky Way RM variations mimic the background supercluster galaxy overdensities, puts constraints on the IGM magneto-ionic ``strength'' in these two superclusters. We obtain an approximate typical upper limit on the field strength of about 0.3 microGauss l/(500 kpc), when we combine our RM data with fiducial estimates of electron density from the environments of giant radio galaxies, and of the warm-hot intergalactic medium (WHIM).Comment: 8 pages, 3 figures, 1 table, to appear in the Astrophysical Journa

    National geological screening : the Wealden district

    Get PDF
    This report is the published product of one of a series of studies covering England, Wales and Northern Ireland commissioned by Radioactive Waste Management (RWM) Ltd. The report provides geological information about the Wealden district region to underpin the process of national geological screening set out in the UK’s government White Paper Implementing geological disposal: a framework for the long-term management of higher activity radioactive waste (DECC, 2014). The report describes geological features relevant to the safety requirements of a geological disposal facility (GDF) for radioactive waste emplaced onshore and up to 20 km offshore at depths between 200 and 1000 m from surface. It is written for a technical audience but is intended to inform RWM in its discussions with communities interested in finding out about the potential for their area to host a GDF

    DA495 - an aging pulsar wind nebula

    Full text link
    We present a radio continuum study of the pulsar wind nebula (PWN) DA 495 (G65.7+1.2), including images of total intensity and linear polarization from 408 to 10550 MHz based on the Canadian Galactic Plane Survey and observations with the Effelsberg 100-m Radio Telescope. Removal of flux density contributions from a superimposed \ion{H}{2} region and from compact extragalactic sources reveals a break in the spectrum of DA 495 at 1.3 GHz, with a spectral index α=0.45±0.20{\alpha}={-0.45 \pm 0.20} below the break and α=0.87±0.10{\alpha}={-0.87 \pm 0.10} above it (Sννα{S}_\nu \propto{\nu^{\alpha}}). The spectral break is more than three times lower in frequency than the lowest break detected in any other PWN. The break in the spectrum is likely the result of synchrotron cooling, and DA 495, at an age of \sim20,000 yr, may have evolved from an object similar to the Vela X nebula, with a similarly energetic pulsar. We find a magnetic field of \sim1.3 mG inside the nebula. After correcting for the resulting high internal rotation measure, the magnetic field structure is quite simple, resembling the inner part of a dipole field projected onto the plane of the sky, although a toroidal component is likely also present. The dipole field axis, which should be parallel to the spin axis of the putative pulsar, lies at an angle of {\sim}50\degr east of the North Celestial Pole and is pointing away from us towards the south-west. The upper limit for the radio surface brightness of any shell-type supernova remnant emission around DA 495 is Σ1GHz5.4×1023\Sigma_{1 GHz} \sim 5.4 \times 10^{-23} OAWatt m2^{-2} Hz1^{-1} sr1^{-1} (assuming a radio spectral index of α=0.5\alpha = -0.5), lower than the faintest shell-type remnant known to date.Comment: 25 pages, accepted by Ap

    Anisotropy in the Cosmic Microwave Background at Degree Angular Scales: Python V Results

    Get PDF
    Observations of the microwave sky using the Python telescope in its fifth season of operation at the Amundsen-Scott South Pole Station in Antarctica are presented. The system consists of a 0.75 m off-axis telescope instrumented with a HEMT amplifier-based radiometer having continuum sensitivity from 37-45 GHz in two frequency bands. With a 0.91 deg x 1.02 deg beam the instrument fully sampled 598 deg^2 of sky, including fields measured during the previous four seasons of Python observations. Interpreting the observed fluctuations as anisotropy in the cosmic microwave background, we place constraints on the angular power spectrum of fluctuations in eight multipole bands up to l ~ 260. The observed spectrum is consistent with both the COBE experiment and previous Python results. There is no significant contamination from known foregrounds. The results show a discernible rise in the angular power spectrum from large (l ~ 40) to small (l ~ 200) angular scales. The shape of the observed power spectrum is not a simple linear rise but has a sharply increasing slope starting at l ~ 150.Comment: 5 page
    corecore