9 research outputs found
Development of a triclosan scaffold which allows for adaptations on both the A- and B-ring for transport peptides
The enoyl acyl-carrier protein reductase (ENR) enzyme is harbored within the apicoplast of apicomplexan parasites providing a significant challenge for drug delivery, which may be overcome through the addition of transductive peptides, which facilitates crossing the apicoplast membranes. The binding site of triclosan, a potent ENR inhibitor, is occluded from the solvent making the attachment of these linkers challenging. Herein, we have produced 3 new triclosan analogs with bulky A- and B-ring motifs, which protrude into the solvent allowing for the future attachment of molecular transporters for delivery
Transcultural engagement with Polish memory of the Holocaust while watching Leszek Wosiewicz's Kornblumenblau
Kornblumenblau (Leszek Wosiewicz 1989) is a film that explores the experience of a Polish political prisoner interned at Auschwitz I. It particularly foregrounds issues related to Polish-Jewish relations during the Holocaust in its diegesis. Holocaust films are often discussed in relation to representation and the cultural specificity of their production context. However, this paper suggests thinking about film and topographies, the theme of this issue, not in relation to where a work is produced but in regards to the spectatorial space. It adopts a phenomenological approach to consider how, despite Kornblumenblau's particularly Polish themes, it might address the transcultural spectator and draw attention to the broader difficulties one faces when attempting to remember the Holocaust. Influenced particularly by the writing of Jennifer M. Barker and Laura U. Marks, this paper suggests that film possesses a body ¬¬- a display of intentionality, beyond those presented within the diegesis, which engages in dialogue with the spectator. During the experience of viewing Kornblumenblau, this filmic corporeality draws attention to the difficulties of confronting the Holocaust in particularly haptic ways, as the film points to the unreliability of visual historical sources, relates abject sensations to concentrationary spaces and breaks down as it confronts the scene of the gas chamber
Novel N-Benzoyl-2-hydroxybenzamide disrupts unique parasite secretory pathway
Toxoplasma gondii is a protozoan parasite that can damage the human brain and eyes. There are no curative medicines. Herein, we describe our discovery of N-benzoyl-2-hydroxybenzamides as a class of compounds effective in low nanomolar range against T. gondii in vitro and in vivo. Our lead compound QQ-437 displays robust activity against the parasite, useful as a new scaffold for development of novel and improved inhibitors of T. gondii. Our genome-wide investigations reveal a specific mechanism of resistance to N-benzoyl-2-hydroxybenzamides mediated by Adaptin-3β, a large protein from the secretory protein complex. N-benzoyl-2-hydroxybenzamide -resistant clones have alterations of their secretory pathway which traffics proteins to micronemes, rhoptries, dense granules and acidocalcisome/Plant-Like Vacuole (PLV). N-benzoyl-2-hydroxybenzamide treatment also alters micronemes, rhoptries, the contents of dense granules and most markedly acidocalcisomes/PLV. Furthermore, QQ-437 is active against chloroquine-resistant Plasmodium falciparum. Our studies reveal a novel class of compounds that disrupts a unique secretory pathway of T. gondii, with potential to be used as scaffolds to discover improved compounds to treat the devastating diseases caused by apicomplexan parasites
Design, synthesis, and biological activity of diaryl ether inhibitors of Toxoplasma gondii enoyl reductase
Triclosan is a potent inhibitor of Toxoplasma gondii enoyl reductase (TgENR), which is an essential enzyme for parasite survival. In view of triclosan's poor druggability, which limits its therapeutic use, a new set of B-ring modified analogs were designed to optimize its physico-chemical properties. These derivatives were synthesized and evaluated by in vitro assay and TgENR enzyme assay. Some analogs display improved solubility, permeability and a comparable MIC50 value to that of triclosan. Modeling of these inhibitors revealed the same overall binding mode with the enzyme as triclosan, but the B-ring modifications have additional interactions with the strongly conserved Asn130