73 research outputs found

    Actin: its cumbersome pilgrimage through cellular compartments

    Get PDF
    In this article, we follow the history of one of the most abundant, most intensely studied proteins of the eukaryotic cells: actin. We report on hallmarks of its discovery, its structural and functional characterization and localization over time, and point to present days’ knowledge on its position as a member of a large family. We focus on the rather puzzling number of diverse functions as proposed for actin as a dual compartment protein. Finally, we venture on some speculations as to its origin

    Comparative genome analysis and genome-guided physiological analysis of Roseobacter litoralis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Roseobacter litoralis </it>OCh149, the type species of the genus, and <it>Roseobacter denitrificans </it>OCh114 were the first described organisms of the <it>Roseobacter </it>clade, an ecologically important group of marine bacteria. Both species were isolated from seaweed and are able to perform aerobic anoxygenic photosynthesis.</p> <p>Results</p> <p>The genome of <it>R. litoralis </it>OCh149 contains one circular chromosome of 4,505,211 bp and three plasmids of 93,578 bp (pRLO149_94), 83,129 bp (pRLO149_83) and 63,532 bp (pRLO149_63). Of the 4537 genes predicted for <it>R. litoralis</it>, 1122 (24.7%) are not present in the genome of <it>R. denitrificans</it>. Many of the unique genes of <it>R. litoralis </it>are located in genomic islands and on plasmids. On pRLO149_83 several potential heavy metal resistance genes are encoded which are not present in the genome of <it>R. denitrificans</it>. The comparison of the heavy metal tolerance of the two organisms showed an increased zinc tolerance of <it>R. litoralis</it>. In contrast to <it>R. denitrificans</it>, the photosynthesis genes of <it>R. litoralis </it>are plasmid encoded. The activity of the photosynthetic apparatus was confirmed by respiration rate measurements, indicating a growth-phase dependent response to light. Comparative genomics with other members of the <it>Roseobacter </it>clade revealed several genomic regions that were only conserved in the two <it>Roseobacter </it>species. One of those regions encodes a variety of genes that might play a role in host association of the organisms. The catabolism of different carbon and nitrogen sources was predicted from the genome and combined with experimental data. In several cases, e.g. the degradation of some algal osmolytes and sugars, the genome-derived predictions of the metabolic pathways in <it>R. litoralis </it>differed from the phenotype.</p> <p>Conclusions</p> <p>The genomic differences between the two <it>Roseobacter </it>species are mainly due to lateral gene transfer and genomic rearrangements. Plasmid pRLO149_83 contains predominantly recently acquired genetic material whereas pRLO149_94 was probably translocated from the chromosome. Plasmid pRLO149_63 and one plasmid of <it>R. denitrifcans </it>(pTB2) seem to have a common ancestor and are important for cell envelope biosynthesis. Several new mechanisms of substrate degradation were indicated from the combination of experimental and genomic data. The photosynthetic activity of <it>R. litoralis </it>is probably regulated by nutrient availability.</p

    Fructose-Bisphophate Aldolase Exhibits Functional Roles between Carbon Metabolism and the hrp System in Rice Pathogen Xanthomonas oryzae pv. oryzicola

    Get PDF
    Fructose-bisphophate aldolase (FbaB), is an enzyme in glycolysis and gluconeogenesis in living organisms. The mutagenesis in a unique fbaB gene of Xanthomonas oryzae pv. oryzicola, the causal agent of rice bacterial leaf streak, led the pathogen not only unable to use pyruvate and malate for growth and delayed its growth when fructose was used as the sole carbon source, but also reduced extracellular polysaccharide (EPS) production and impaired bacterial virulence and growth in rice. Intriguingly, the fbaB promoter contains an imperfect PIP-box (plant-inducible promoter) (TTCGT-N9-TTCGT). The expression of fbaB was negatively regulated by a key hrp regulatory HrpG and HrpX cascade. Base substitution in the PIP-box altered the regulation of fbaB with the cascade. Furthermore, the expression of fbaB in X. oryzae pv. oryzicola RS105 strain was inducible in planta rather than in a nutrient-rich medium. Except other hrp-hrc-hpa genes, the expression of hrpG and hrpX was repressed and the transcripts of hrcC, hrpE and hpa3 were enhanced when fbaB was deleted. The mutation in hrcC, hrpE or hpa3 reduced the ability of the pathogen to acquire pyruvate and malate. In addition, bacterial virulence and growth in planta and EPS production in RΔfbaB mutant were completely restored to the wild-type level by the presence of fbaB in trans. This is the first report to demonstrate that carbohydrates, assimilated by X. oryzae pv. oryzicola, play critical roles in coordinating hrp gene expression through a yet unknown regulator

    Rhizobacterial salicylate production provokes headaches!

    Full text link

    Regulation of inflammatory signaling by the ST6Gal-I sialyltransferase.

    No full text
    The ST6Gal-I sialyltransferase, an enzyme that adds α2-6-linked sialic acids to N-glycosylated proteins, regulates multiple immunological processes. However, the contribution of receptor sialylation to inflammatory signaling has been under-investigated. In the current study, we uncovered a role for ST6Gal-I in promoting sustained signaling through two prominent inflammatory pathways, NFκB and JAK/STAT. Using the U937 monocytic cell model, we determined that knockdown (KD) of ST6Gal-I expression had no effect on the rapid activation of NFκB by TNF (≤ 30 min), whereas long-term TNF-induced NFκB activation (2-6 hr) was diminished in ST6Gal-I-KD cells. These data align with prior work in epithelial cells showing that α2-6 sialylation of TNFR1 prolongs TNF-dependent NFκB activation. Similar to TNF, long-term, but not short-term, LPS-induced activation of NFκB was suppressed by ST6Gal-I KD. ST6Gal-I KD cells also exhibited reduced long-term IRF3 and STAT3 activation by LPS. Given that ST6Gal-I activity modulated LPS-dependent signaling, we conducted pull-down assays using SNA (a lectin specific for α2-6 sialic acids) to show that the LPS receptor, TLR4, is a substrate for sialylation by ST6Gal-I. We next assessed signaling by IFNγ, IL-6 and GM-CSF, and found that ST6Gal-I-KD had a limited effect on STAT activation induced by these cytokines. To corroborate these findings, signaling was monitored in bone marrow derived macrophages (BMDMs) from mice with myeloid-specific deletion of ST6Gal-I (LysMCre/ST6Gal-Ifl/fl). In agreement with data from U937 cells, BMDMs with ST6Gal-I knockout displayed reduced long-term activation of NFκB by both TNF and LPS, and diminished long-term LPS-dependent STAT3 activation. However, STAT activation induced by IFNγ, IL-6 and GM-CSF was comparable in wild-type and ST6Gal-I knockout BMDMs. These results implicate ST6Gal-I-mediated receptor sialylation in prolonging the activity of select signaling cascades including TNF/NFκB, LPS/NFκB, and LPS/STAT3, providing new insights into ST6Gal-I's role in modulating the inflammatory phenotype of monocytic cells
    • …
    corecore