1,445 research outputs found

    Data-driven modeling for drop size distributions

    Get PDF
    The prediction of the drop size distribution (DSD) resulting from liquid atomization is key to the optimization of multiphase flows from gas-turbine propulsion through agriculture to healthcare. Obtaining high-fidelity data of liquid atomization, either experimentally or numerically, is expensive, which makes the exploration of the design space difficult. First, to tackle these challenges, we propose a framework to predict the DSD of a liquid spray based on data as a function of the spray angle, the Reynolds number, and the Weber number. Second, to guide the design of liquid atomizers, the model accurately predicts the volume of fluid contained in drops of specific sizes while providing uncertainty estimation. To do so, we propose a Gaussian process regression (GPR) model, which infers the DSD and its uncertainty form the knowledge of its integrals and of its first moment, i.e., the mean drop diameter. Third, we deploy multiple GPR models to estimate these quantities at arbitrary points of the design space from data obtained from a large number of numerical simulations of a flat fan spray. The kernel used for reconstructing the DSD incorporates prior physical knowledge, which enables the prediction of sharply peaked and heavy-tailed distributions. Fourth, we compare our method with a benchmark approach, which estimates the DSD by interpolating the frequency polygon of the binned drops with a GPR. We show that our integral approach is significantly more accurate, especially in the tail of the distribution (i.e., large, rare drops), and it reduces the bias of the density estimator by up to 10 times. Finally, we discuss physical aspects of the model's predictions and interpret them against experimental results from the literature. This work opens opportunities for modeling drop size distribution in multiphase flows from data

    Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors

    Get PDF
    Searches for a stochastic gravitational-wave background (SGWB) using terrestrial detectors typically involve cross-correlating data from pairs of detectors. The sensitivity of such cross-correlation analyses depends, among other things, on the separation between the two detectors: the smaller the separation, the better the sensitivity. Hence, a colocated detector pair is more sensitive to a gravitational-wave background than a noncolocated detector pair. However, colocated detectors are also expected to suffer from correlated noise from instrumental and environmental effects that could contaminate the measurement of the background. Hence, methods to identify and mitigate the effects of correlated noise are necessary to achieve the potential increase in sensitivity of colocated detectors. Here we report on the first SGWB analysis using the two LIGO Hanford detectors and address the complications arising from correlated environmental noise. We apply correlated noise identification and mitigation techniques to data taken by the two LIGO Hanford detectors, H1 and H2, during LIGO\u27s fifth science run. At low frequencies, 40-460 Hz, we are unable to sufficiently mitigate the correlated noise to a level where we may confidently measure or bound the stochastic gravitational-wave signal. However, at high frequencies, 460-1000 Hz, these techniques are sufficient to set a 95% confidence level upper limit on the gravitational-wave energy density of Omega(f) \u3c 7.7 x 10(-4) (f/900 Hz)(3), which improves on the previous upper limit by a factor of similar to 180. In doing so, we demonstrate techniques that will be useful for future searches using advanced detectors, where correlated noise (e.g., from global magnetic fields) may affect even widely separated detectors

    Characterization of the LIGO detectors during their sixth science run

    Get PDF
    In 2009-2010, the Laser Interferometer Gravitational-Wave Observatory (LIGO) operated together with international partners Virgo and GEO600 as a network to search for gravitational waves (GWs) of astrophysical origin. The sensitivity of these detectors was limited by a combination of noise sources inherent to the instrumental design and its environment, often localized in time or frequency, that couple into the GW readout. Here we review the performance of the LIGO instruments during this epoch, the work done to characterize the detectors and their data, and the effect that transient and continuous noise artefacts have on the sensitivity of LIGO to a variety of astrophysical sources

    Mixing and recirculation characteristics of gas-liquid Taylor flow in microreactors

    Get PDF
    The effects of operating parameters (capillary and Reynolds numbers) and microchannel aspect ratio (α = w/h = [1; 2.5; 4]) on the recirculation characteristics of the liquid slug in gas-liquid Taylor flow in microchannels have been investigated using 3-dimensional VOF simulations. The results show a decrease in the recirculation volume in the slug and an increase in recirculation time with increasing capillary number, which is in good agreement with previous results obtained in circular and square geometries (Thulasidas et al., 1997). In addition, increasing the aspect ratio of the channel leads to a slight decrease in recirculating volumes but also a significant increase in recirculation times

    Gravitational Waves from Known Pulsars: Results from the Initial Detector Era

    Get PDF
    We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper

    Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors

    Get PDF
    Cosmic strings can give rise to a large variety of interesting astrophysical phenomena. Among them, powerful bursts of gravitational waves (GWs) produced by cusps are a promising observational signature. In this Letter we present a search for GWs from cosmic string cusps in data collected by the LIGO and Virgo gravitational wave detectors between 2005 and 2010, with over 625 days of live time. We find no evidence of GW signals from cosmic strings. From this result, we derive new constraints on cosmic string parameters, which complement and improve existing limits from previous searches for a stochastic background of GWs from cosmic microwave background measurements and pulsar timing data. In particular, if the size of loops is given by the gravitational backreaction scale, we place upper limits on the string tension G mu below 10-8 in some regions of the cosmic string parameter space
    corecore