669 research outputs found

    Strong-Pinning Effects in Low-Temperature Creep: Charge-Density Waves in TaS_3

    Full text link
    Nonlinear conduction in the quasi-one dimensional conductor o-TaS_3 has been studied in the low-temperature region down to 30 mK. It was found that at temperatures below a few Kelvins the current-voltage (I-V) characteristics consist of several branches. The temperature evolution of the I-V curve proceeds through sequential freezing-out of the branches. The origin of each branch is attributed to a particular strong pinning impurity type. Similar behavior is expected for other physical systems with collective transport (spin-density waves, Wigner crystals, vortex lattices in type-II superconductors etc.) in the presence of strong pinning centers.Comment: 11 pages, 3 ps figures, Revtex, To be published in Phys. Rev. Letters (1997

    Unconventional magnetoresistance in long InSb nanowires

    Full text link
    Magnetoresistance in long correlated nanowires of degenerate semiconductor InSb in asbestos matrix (wire diameter of around 5 nm, length 0.1 - 1 mm) is studied over temperature range 2.3 - 300 K. At zero magnetic field the electric conduction GG and the current-voltage characteristics of such wires obey the power laws GTαG\propto T^\alpha, IVβI\propto V^\beta, expected for one-dimensional electron systems. The effect of magnetic field corresponds to a 20% growth of the exponents α\alpha, β\beta at H=10 T. The observed magnetoresistance is caused by the magnetic-field-induced breaking of the spin-charge separation and represents a novel mechanism of magnetoresistance.Comment: To be published in JETP Letters, vol. 77 (2003

    Region of Excessive Flux of PeV Cosmic Rays in the Direction Toward Pulsars PSR J1840+5640 and LAT PSR J1836+5925

    Full text link
    An analysis of arrival directions of extensive air showers (EAS) registered with the EAS MSU and EAS-1000 prototype arrays has revealed a region of excessive flux of PeV cosmic rays in the direction toward pulsars PSR J1840+5640 and LAT PSR J1836+5925 at significance level up to 4.5sigma. The first of the pulsars was discovered almost 30 years ago and is a well-studied old radio pulsar located at the distance of 1.7pc from the Solar system. The second pulsar belongs to a new type of pulsars, discovered by the space gamma-ray observatory Fermi, pulsations of which are not observed in optical and radio wavelengths but only in the gamma-ray range of energies (gamma-ray-only pulsars). In our opinion, the existence of the region of excessive flux of cosmic rays registered with two different arrays provides a strong evidence that isolated pulsars can give a noticeable contribution to the flux of Galactic cosmic rays in the PeV energy range.Comment: 14 pages; v.2: a few remarks to match a version accepted for Astronomy Letters added. They can be found by redefining the \NEW command in the preamble of the LaTeX fil

    Self-assembled quasi-1D and 2D nanostructures of fullerenes on silicon

    Full text link
    The work was supported by Russian Foundation for Basic Researches (Grant No. 17-02-00577)

    Local Inhomogeneity Effects on Nucleation Process in a High External Bias

    Full text link
    Quantum nucleation processes in the presence of local moderate inhomogeneities are studied theoretically at high biases. The quantum nucleation rate Gamma is calculated for one-dimensional systems in a form Gamma = A e^(-B/hbar) by using the `bounce' method. The bias-dependence of the exponent B is shown to be changed by inhomogeneities. This change is explained by the reduction of the effective spatial dimension of the system. By studying the system-size dependence of the prefactor A, the condition for the appearance of inhomogeneity effects is evaluated. Nucleation rates in thermal activation regimes are also calculated, and compared with quantum tunneling regimes. For higher-dimensional systems, it is shown that the local approximation of inhomogeneity does not hold, and that spatial profiles of inhomogeneity become important.Comment: 10 pages, 6 figure

    Contributions of spontaneous phase slippage to linear and non-linear conduction near the Peierls transition in thin samples of o-TaS_3

    Full text link
    In the Peierls state very thin samples of TaS_3 (cross-section area \sim 10^{-3} mkm^2) are found to demonstrate smearing of the I-V curves near the threshold field. With approaching the Peierls transition temperature, T_P, the smearing evolves into smooth growth of conductance from zero voltage interpreted by us as the contribution of fluctuations to the non--linear conductance. We identify independently the fluctuation contribution to the linear conductance near T_P. Both linear and non-linear contributions depend on temperature with close activation energies \sim (2 - 4) x 10^3 K and apparently reveal the same process. We reject creep of the {\it continuous} charge-density waves (CDWs) as the origin of this effect and show that it is spontaneous phase slippage that results in creep of the CDW. A model is proposed accounting for both the linear and non-linear parts of the fluctuation conduction up to T_P.Comment: 6 pages, 5 Postscript figure, RevTeX, accepted for publication in PR

    On the angular distribution of extensive air showers

    Full text link
    Angular distributions of extensive air showers with different number of charged particles in the range 2.5x10^5--4x10^7 are derived using the experimental data obtained with the EAS MSU array. Possible approximations of the obtained distributions with different empiric functions available in literature, are analysed. It is shown that the exponential function provides the best approximation of the angular distributions in the sense of the chi-squared criterion.Comment: 5 pages including 1 figur

    The current status of orbital experiments for UHECR studies

    Full text link
    Two types of orbital detectors of extreme energy cosmic rays are being developed nowadays: (i) TUS and KLYPVE with reflecting optical systems (mirrors) and (ii) JEM-EUSO with high-transmittance Fresnel lenses. They will cover much larger areas than existing ground-based arrays and almost uniformly monitor the celestial sphere. The TUS detector is the pioneering mission developed in SINP MSU in cooperation with several Russian and foreign institutions. It has relatively small field of view (+/-4.5 deg), which corresponds to a ground area of 6.4x10^3 sq.km. The telescope consists of a Fresnel-type mirror-concentrator (~2 sq.m) and a photo receiver (a matrix of 16x16 photomultiplier tubes). It is to be deployed on the Lomonosov satellite, and is currently at the final stage of preflight tests. Recently, SINP MSU began the KLYPVE project to be installed on board of the Russian segment of the ISS. The optical system of this detector contains a larger primary mirror (10 sq.m), which allows decreasing the energy threshold. The total effective field of view will be at least +/-14 degrees to exceed the annual exposure of the existing ground-based experiments. Several configurations of the detector are being currently considered. Finally, JEM-EUSO is a wide field of view (+/-30 deg) detector. The optics is composed of two curved double-sided Fresnel lenses with 2.65 m external diameter, a precision diffractive middle lens and a pupil. The ultraviolet photons are focused onto the focal surface, which consists of nearly 5000 multi-anode photomultipliers. It is developed by a large international collaboration. All three orbital detectors have multi-purpose character due to continuous monitoring of various atmospheric phenomena. The present status of development of the TUS and KLYPVE missions is reported, and a brief comparison of the projects with JEM-EUSO is given.Comment: 18 pages; based on the rapporteur talk given by M.I. Panasyuk at ECRS-2014; v2: a few minor language issues fixed thanks to the editor; to be published in the proceeding

    Prompt photon and associated heavy quark production at hadron colliders with kt-factorization

    Full text link
    In the framework of the kt-factorization approach, the production of prompt photons in association with a heavy (charm or beauty) quarks at high energies is studied. The consideration is based on the O(\alpha \alpha_s^2) off-shell amplitudes of gluon-gluon fusion and quark-(anti)quark interaction subprocesses. The unintegrated parton densities in a proton are determined using the Kimber-Martin-Ryskin prescription. The analysis covers the total and differential cross sections and extends to specific angular correlations between the produced prompt photons and muons originating from the semileptonic decays of associated heavy quarks. Theoretical uncertainties of our evaluations are studied and comparison with the results of standard NLO pQCD calculations is performed. Our numerical predictions are compared with the recent experimental data taken by the D0 and CDF collaborations at the Tevatron. Finally, we extend our results to LHC energies.Comment: 14 pages, 10 figure
    corecore