10,390 research outputs found

    Searching Gravitational Waves from Pulsars, Using Laser Beam Interferometers

    Get PDF
    We use recent population synthesis results to investigate the distribution of pulsars in the frequency space, having a gravitational strain high enough to be detected by the future generations of laser beam interferometers. We find that until detectors become able to recover the entire population, the frequency distribution of the 'detectable' population will be very dependent on the detector noise curve. Assuming a mean equatorial deformation ϵ=106\epsilon =10^{-6}, the optimal frequency is around 450 Hz for interferometers of the first generation (LIGO or VIRGO) and shifts toward 85 Hz for advanced detectors. An interesting result for future detection stategies is the significant narrowing of the distribution when improving the sensitivity: with an advanced detector, it is possible to have 90% of detection probability while exploring less than 20% of the parameter space (7.5% in the case of ϵ=105\epsilon =10^{-5}). In addition, we show that in most cases the spindown of 'detectable' pulsars represents a period shift of less than a tens of nanoseconds after one year of observation, making them easier to follow in the frequency space.Comment: 5 pages, 3 figures accepted for publication in Astronomy & Astrophysic

    Homothetic Wyman Spacetimes

    Get PDF
    The time-dependent, spherically symmetric, Wyman sector of the Unified Field Theory is shown to be equivalent to a self-gravitating scalar field with a positive-definite, repulsive self-interaction potential. A homothetic symmetry is imposed on the fundamental tensor, and the resulting autonomous system is numerically integrated. Near the critical point (between the collapsing and non-collapsing spacetimes) the system displays an approximately periodic alternation between collapsing and dispersive epochs.Comment: 15 pages with 6 figures; requires amsart, amssymb, amsmath, graphicx; formatted for publication in Int. J. Mod. Phys.

    Regulation of motor proteins, axonal transport deficits and adult-onset neurodegenerative diseases

    Get PDF
    © The Author(s), 2017. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Neurobiology of Disease 105 (2017): 273-282, doi:10.1016/j.nbd.2017.04.010.Neurons affected in a wide variety of unrelated adult-onset neurodegenerative diseases (AONDs) typically exhibit a “dying back” pattern of degeneration, which is characterized by early deficits in synaptic function and neuritic pathology long before neuronal cell death. Consistent with this observation, multiple unrelated AONDs including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and several motor neuron diseases feature early alterations in kinase-based signaling pathways associated with deficits in axonal transport (AT), a complex cellular process involving multiple intracellular trafficking events powered by microtubule-based motor proteins. These pathogenic events have important therapeutic implications, suggesting that a focus on preservation of neuronal connections may be more effective to treat AONDs than addressing neuronal cell death. While the molecular mechanisms underlying AT abnormalities in AONDs are still being analyzed, evidence has accumulated linking those to a well-established pathological hallmark of multiple AONDs: altered patterns of neuronal protein phosphorylation. Here, we present a short overview on the biochemical heterogeneity of major motor proteins for AT, their regulation by protein kinases, and evidence revealing cell type-specific AT specializations. When considered together, these findings may help explain how independent pathogenic pathways can affect AT differentially in the context of each AOND.The authors would like to acknowledge funding from CHDI and NIH grants RO1 NS066942A, R21 NS096642 (to G.M) and R01-NS023868 and R01-NS041170 and a Zenith Award from the Alzheimer’s Association (to STB).2018-04-1

    Cosmic Censorship: As Strong As Ever

    Get PDF
    Spacetimes which have been considered counter-examples to strong cosmic censorship are revisited. We demonstrate the classical instability of the Cauchy horizon inside charged black holes embedded in de Sitter spacetime for all values of the physical parameters. The relevant modes which maintain the instability, in the regime which was previously considered stable, originate as outgoing modes near to the black hole event horizon. This same mechanism is also relevant for the instability of Cauchy horizons in other proposed counter-examples of strong cosmic censorship.Comment: 4 pages RevTeX style, 1 figure included using epsfi

    Gauge symmetry breaking on orbifolds

    Full text link
    We discuss a new method for gauge symmetry breaking in theories with one extra dimension compactified on the orbifold S^1/Z_2. If we assume that fields and their derivatives can jump at the orbifold fixed points, we can implement a generalized Scherk-Schwarz mechanism that breaks the gauge symmetry. We show that our model with discontinuous fields is equivalent to another with continuous but non periodic fields; in our scheme localized lagrangian terms for bulk fields appear.Comment: 6 pages, 2 figures. Talk given at the XXXVIIth Rencontres de Moriond, "Electroweak interactions and unified theories", Les Arcs, France, 9-16 Mar 2002. Minor changes, one reference adde

    Gravitational collapse from smooth initial data with vanishing radial pressure

    Full text link
    We study here the spherical gravitational collapse assuming initial data to be necessarily smooth, as motivated by the requirements based on physical reasonableness. A tangential pressure model is constructed and analyzed in order to understand the final fate of collapse explicitly in terms of the density and pressure parameters at the initial epoch from which the collapsedevelops. It is seen that both black holes and naked singularities are produced as collapse end states even when the initial data is smooth. We show that the outcome is decided entirely in terms of the initial data, as given by density, pressure and velocity profiles at the initial epoch, from which the collapse evolves.Comment: 10 pages,3 figures,revtex4,Revised Versio

    A nonlinear detection algorithm for periodic signals in gravitational wave detectors

    Get PDF
    We present an algorithm for the detection of periodic sources of gravitational waves with interferometric detectors that is based on a special symmetry of the problem: the contributions to the phase modulation of the signal from the earth rotation are exactly equal and opposite at any two instants of time separated by half a sidereal day; the corresponding is true for the contributions from the earth orbital motion for half a sidereal year, assuming a circular orbit. The addition of phases through multiplications of the shifted time series gives a demodulated signal; specific attention is given to the reduction of noise mixing resulting from these multiplications. We discuss the statistics of this algorithm for all-sky searches (which include a parameterization of the source spin-down), in particular its optimal sensitivity as a function of required computational power. Two specific examples of all-sky searches (broad-band and narrow-band) are explored numerically, and their performances are compared with the stack-slide technique (P. R. Brady, T. Creighton, Phys. Rev. D, 61, 082001).Comment: 9 pages, 3 figures, to appear in Phys. Rev.

    Impact of real-time ultrasound guidance on complications of percutaneous dilatational tracheostomy: a propensity score analysis

    Get PDF
    Abstract Introduction Recent studies have demonstrated the feasibility of real-time ultrasound guidance during percutaneous dilatational tracheostomy, including in patients with risk factors such as coagulopathy, cervical spine immobilization and morbid obesity. Use of real-time ultrasound guidance has been shown to improve the technical accuracy of percutaneous dilatational tracheostomy; however, it is unclear if there is an associated reduction in complications. Our objective was to determine whether the peri-procedural use of real-time ultrasound guidance is associated with a reduction in complications of percutaneous dilatational tracheostomy using a propensity score analysis. Methods This study reviewed all percutaneous dilatational tracheostomies performed in an 8-year period in a neurocritical care unit. Percutaneous dilatational tracheostomies were typically performed by trainees under guidance of the attending intensivist. Bronchoscopic guidance was used for all procedures with addition of real-time ultrasound guidance at the discretion of the attending physician. Real-time ultrasound guidance was used to guide endotracheal tube withdrawal, guide tracheal puncture, identify guidewire entry level and confirm bilateral lung sliding. The primary outcome was a composite of previously defined complications including (among others) bleeding, infection, loss of airway, inability to complete procedure, need for revision, granuloma and early dislodgement. Propensity score analysis was used to ensure that the relationship of not using real-time ultrasound guidance with the probability of an adverse outcome was examined within groups of patients having similar covariate profiles. Covariates included were age, gender, body mass index, diagnosis, Acute Physiology and Chronic Health Evaluation II score, timing of tracheostomy, positive end-expiratory pressure and presence of risk factors including coagulopathy, cervical spine immobilization and prior tracheostomy. Results A total of 200 patients underwent percutaneous dilatational tracheostomy during the specified period, and 107 received real-time ultrasound guidance. Risk factors for percutaneous dilatational tracheostomy were present in 63 (32%). There were nine complications in the group without real-time ultrasound guidance: bleeding (n = 4), need for revision related to inability to ventilate or dislodgement (n = 3) and symptomatic granuloma (n = 2). There was one complication in the real-time ultrasound guidance group (early dislodgement). The odds of having an adverse outcome for patients receiving real-time ultrasound guidance were significantly lower (odds ratio = 0.08; 95% confidence interval, 0.009 to 0.811; P = 0.032) than for those receiving a standard technique while holding the propensity score quartile fixed. Conclusions The use of real-time ultrasound guidance during percutaneous dilatational tracheostomy was associated with a significant reduction in procedure-related complications.http://deepblue.lib.umich.edu/bitstream/2027.42/111730/1/13054_2015_Article_924.pd
    corecore