We use recent population synthesis results to investigate the distribution of
pulsars in the frequency space, having a gravitational strain high enough to be
detected by the future generations of laser beam interferometers.
We find that until detectors become able to recover the entire population,
the frequency distribution of the 'detectable' population will be very
dependent on the detector noise curve. Assuming a mean equatorial deformation
ϵ=10−6, the optimal frequency is around 450 Hz for interferometers
of the first generation (LIGO or VIRGO) and shifts toward 85 Hz for advanced
detectors. An interesting result for future detection stategies is the
significant narrowing of the distribution when improving the sensitivity: with
an advanced detector, it is possible to have 90% of detection probability while
exploring less than 20% of the parameter space (7.5% in the case of ϵ=10−5). In addition, we show that in most cases the spindown of
'detectable' pulsars represents a period shift of less than a tens of
nanoseconds after one year of observation, making them easier to follow in the
frequency space.Comment: 5 pages, 3 figures accepted for publication in Astronomy &
Astrophysic