25 research outputs found

    Prospect, isolation, and characterization of microorganisms for potential use in cases of oil bioremediation along the coast of Trindade Island, Brazil

    No full text
    In the present study, acrylic coupons with a thin layer of oil on the surface were incubated in the coastal water of Trindade Island, Brazil, for 60 days. The microorganisms adhered to the coupons were isolated using enrichment medium with hexadecane and naphthalene as the sole carbon and energy source. A total of 15 bacterial isolates were obtained, and the ability of these isolates to use different hydrocarbons as the source of carbon and energy was investigated. None of the isolates produced biosurfactants under our experimental conditions. Subsequently, identification methods such as partial sequencing of the 16S rRNA gene and analysis of fatty acids (MIDI) profile were employed. Among the 15 isolates, representatives of Actinobacteria, Firmicutes, and Alphaproteobacteria were detected. The isolates Rhodococcus rhodochrous TRN7 and Nocardia farcinica TRH1 were able to use all the hydrocarbons added to the culture medium (toluene, octane, xylene, naphthalene, phenanthrene, pyrene, hexadecane, anthracene, eicosane, tetracosane, triacontane, and pentacontane). Polymerase chain reaction amplification of the DNA isolated by employing primers for catechol 2,3-dioxygenase, alkane dehydrogenase and the alpha subunit of hydroxylating dioxygenases polycyclic aromatic hydrocarbon rings genes demonstrated that various isolates capable of utilizing hydrocarbons do not exhibit genes of known routes of catabolism, suggesting the existence of unknown catabolic pathways in these microorganisms. Our findings suggest that the microbiota associated to the coast of tropical oceanic islands has the ability to assist in environmental regeneration in cases of accidents involving oil spills in its shore. Thus, it motivates studies to map bioremediation strategies using the autochthonous microbiota from these environments

    Physiological implications of trehalose in the ectomycorrhizal fungus Pisolithus sp. under thermal stress

    No full text
    The trehalose cycle in filamentous fungi has been suggested to be an important mechanism of tolerance against adverse stress conditions, particularly in thermal stress. Here, we demonstrate that trehalose and trehalase activity can be involved as an additional mechanism in development of thermotolerance in Pisolithus sp. In response to heat shock at 42 °C, an accumulation of intracellular trehalose and an increase in trehalase activity in the mycelial mass of the fungus was observed, when compared to the control treatment (28 °C). In vitro, assays showed that trehalose had a protective effect on β-glucosidase activity under thermal stress. Therefore, trehalose production may be an important mechanism of protection in ectomycorrhizal fungi, and this capacity could be used in the selection of isolates with greater capacity for adaptation to environmental stress

    Phosphine resistance, respiration rate and fitness consequences in stored-product insects

    Get PDF
    Resistance to fumigants has been frequently reported in insect pests of stored products and is one of the obstacles in controlling these pests. The authors studied phosphine resistance and its physiological basis in adult insects of 12 populations of Tribolium castaneum (Herbst) (Tenebrionidae), ten populations of Rhyzopertha dominica (F.) (Bostrichidae) and eight populations of Oryzaephilus surinamensis L. (Silvanidae) from Brazil, and the possible existence of fitness costs associated with phosphine resistance in the absence of this fumigant. The bioassays for the detection of phosphine resistance followed the FAO standard method. The production of carbon dioxide and the instantaneous rate of population increase (r i ) of each population of each species were correlated with their resistance ratios at the LC 50 . The resistance ratio at LC 50 in T. castaneum ranged from 1.0- to 186.2-fold, in R. dominica from 2.0- to 71.0-fold and in O. surinamensis from 1.9- to 32.2-fold. Ten populations of T. castaneum, nine populations of R. dominica and seven populations of O. surinamensis were resistant to phosphine. In all three species there was significant association (P < 0.05) between respiration rate and phosphine resistance. The populations with lower carbon dioxide production showed a higher resistance ratio, suggesting that the lower respiration rate is the physiological basis of phosphine resistance by reducing the fumigant uptake in the resistant insects. Conversely, populations with higher r i showed lower resistance ratios, which could indicate a lower rate of reproduction of the resistant populations compared with susceptible populations. Thus, management strategies based on the interruption of phosphine fumigation may result in reestablishment of susceptibility, and shows good potential for more effective management of phosphine-resistant populations

    Competition between insecticide-susceptible and resistant populations of the maize weevil, Sitophilus zeamais

    No full text
    Insecticide resistance is an evolutionary response to insecticides and, as such, important for environmental biomonitoring and for pest management. Fitness disadvantage in the absence of insecticide is a frequent assumption in models of insecticide resistance evolution, which was observed in different insect species. Fitness studies are based in demographic performance of isolated populations without direct interaction between insecticide-resistant and -susceptible populations. Here we reported a study of direct competition following a factorial bivariate design between an insecticide-susceptible population of the maize weevil, Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae), and one of two insecticide-resistant populations – one exhibiting fitness disadvantage based on demographic studies (Juiz de Fora) and other not exhibiting it (Jacarezinho). Total number of insects, mortality by insecticide, insect body mass and respiration rate were recorded after three generations of competition. Indeed, fitness disadvantage was observed in the resistant population from Juiz de Fora, but not in the population from Jacarezinho, as expected. The higher body mass and respiration rate of the insecticide-resistant insects from Jacarezinho are probably mitigating the physiological costs associated with the insecticide resistance minimizing their fitness disadvantage, what does not take place with the insecticide-resistant insects from Juiz de Fora. These distinct responses between the insecticide-resistant populations are probably related to the length and intensity of field-selection with insecticides

    Fluoride-tolerant mutants of aspergillus niger show enhanced phosphate solubilization capacity

    Get PDF
    P-solubilizing microorganisms are a promising alternative for a sustainable use of P against a backdrop of depletion of high-grade rock phosphates (RPs). Nevertheless, toxic elements present in RPs, such as fluorine, can negatively affect microbial solubilization. Thus, this study aimed at selecting Aspergillus niger mutants efficient at P solubilization in the presence of fluoride (F−). The mutants were obtained by exposition of conidia to UV light followed by screening in a medium supplemented with Ca3(PO4)2 and F−. The mutant FS1-555 showed the highest solubilization in the presence of F−, releasing approximately 70% of the P contained in Ca3(PO4)2, a value 1.7 times higher than that obtained for the wild type (WT). The mutant FS1-331 showed improved ability of solubilizing fluorapatites, increasing the solubilization of Araxá, Catalão, and Patos RPs by 1.7, 1.6, and 2.5 times that of the WT, respectively. These mutants also grew better in the presence of F−, indicating that mutagenesis allowed the acquisition of F− tolerance. Higher production of oxalic acid by FS1-331 correlated with its improved capacity for RP solubilization. This mutant represents a significant improvement and possess a high potential for application in solubilization systems with fluoride-rich phosphate sources

    Tifton grass yield on constructed wetland used for swine wastewater treatment

    No full text
    It is the purpose of this study to evaluate the agronomic behavior and yield of the Tifton 85 grass (Cynodon dactylon Pers), when used in the treatment of swine wastewater (SW) with constructed wetland systems (CWs). For this purpose, five tanks were built measuring 24 x 1.1 x 0.7 m, damp-sealed with PVC canvas and filled with 0.4 m crushed stone. In two of these tanks, Tifton grass was cultivated: one of the tanks (CW 3) contained the grass, and in the other (CW4) the grass was only cultivated in the final third part of the tanks, being preceded by Alternanthera (Althernanthera philoxeroides) and cattail (Thypha latifolia L.). The SW was previously treated by means of a filtration process that consists of 0.7 m - high organic filters; the filtering beds were made of chopped sugarcane bagasse. The filter effluents were applied to CWs at a 0.8 m³ d-1 flow rate, corresponding to a hydraulic detention time of about 4.8 days. During the experimental period, three cuttings were done in CWs plants in order to evaluate the dry matter yield and the nutrient extraction capacity. All plants showed satisfactory performance in dry mass yield (86.3 and 65.3 t ha-1, in CW3 and CW4 respectively) and nutrient extraction, as well as in dry matter yield. Except for the case of Zn, the cultivation of other vegetable species in the same tank did not alter the capacity of the Tifton 85 grass extraction of the SW macro and micronutrients removal

    Data analysis for 16S microbial profiling from different benchtop sequencing platforms

    Get PDF
    Progress in microbial ecology is confounded by problems when evaluating results from different sequencing methodologies. Contrary to existing expectations, here we demonstrate that the same biological conclusion is reached using different NGS technologies when stringent sequence quality filtering and accurate clustering algorithms are applied

    Spray drying as a strategy for biosurfactant recovery, concentration and storage

    Get PDF
    The objective of this study was to analyze the use of Spray Drying for concentration and preservation of biosurfactants produced by Bacillus subtilis LBBMA RI4914 isolated from a heavy oil reservoir. Kaolinite and maltodextrin 10DE or 20DE were tested as drying adjuvants. Surface activity of the biosurfactant was analyzed by preparing dilution x surface activity curves of crude biosurfactant, crude biosurfactant plus adjuvants and of the dried products, after their reconstitution in water. The shelf life of the dried products was also evaluated. Spray drying was effective in the recovery and concentration of biosurfactant, while keeping its surface activity. Drying adjuvants were required to obtain a solid product with the desired characteristics. These compounds did not interfere with tensoactive properties of the biosurfactant molecules. The dehydrated product maintained its surfactant properties during storage at room temperature during the evaluation period (120 days), with no detectable loss of activity

    Relative importance of soil physico-chemical characteristics and plant species identity to the determination of soil microbial community structure

    No full text
    The structure of soil microbial communities is affected by biotic and abiotic environmental factors, such as plant community composition and soil chemical characteristics, among others. However, little is known about the relative importance of these factors on soil microbial community structure. The objective of this study was to verify which factor, soil chemical characteristics or plant species identity, is more important to the determination of soil microbial community structure. For this, a factorial experiment with four soil chemical conditions and five plant species were set in a greenhouse. After 80 days of cultivation, the rhizospheric soil microbial community structure was accessed by a multiplex T-RFLP, and the mycorrhizal colonization of roots and plant shoot dry mass were estimated. Plant species showed similar growth responses to different soil chemical conditions, but exhibited different patterns in the control of root mycorrhizal colonization. A principal component analysis (PCA) was performed using the T-RFLP data set and showed that soil chemical condition is the main factor defining the structure of soil microbial community. Archaeal and bacterial communities showed to be more sensitive to changes in the soil chemical environment, suggesting a greater importance of these microbial groups in plant adaptation
    corecore