3,148 research outputs found

    Periodic forcing in viscous fingering of a nematic liquid crystal

    Get PDF
    We study viscous fingering of an air-nematic interface in a radial Hele-Shaw cell when periodically switching on and off an electric field, which reorients the nematic and thus changes its viscosity, as well as the surface tension and its anisotropy (mainly enforced by a single groove in the cell). We observe undulations at the sides of the fingers which correlate with the switching frequency and with tip oscillations which give maximal velocity to smallest curvatures. These lateral undulations appear to be decoupled from spontaneous (noise-induced) side branching. We conclude that the lateral undulations are generated by successive relaxations between two limiting finger widths. The change between these two selected pattern scales is mainly due to the change in the anisotropy. This scenario is confirmed by numerical simulations in the channel geometry, using a phase-field model for anisotropic viscous fingering.Comment: completely rewritten version, more clear exposition of results (14 pages in Revtex + 7 eps figures

    Level attraction in a microwave optomechanical circuit

    Full text link
    Level repulsion - the opening of a gap between two degenerate modes due to coupling - is ubiquitous anywhere from solid state theory to quantum chemistry. In contrast, if one mode has negative energy, the mode frequencies attract instead. They converge and develop imaginary components, leading to an instability; an exceptional point marks the transition. This, however, only occurs if the dissipation rates of the two modes are comparable. Here we expose a theoretical framework for the general phenomenon and realize it experimentally through engineered dissipation in a multimode superconducting microwave optomechanical circuit. Level attraction is observed for a mechanical oscillator and a superconducting microwave cavity, while an auxiliary cavity is used for sideband cooling. Two exceptional points are demonstrated that could be exploited for their topological properties.Comment: 5 pages, 4 figures; includes Supplementary informatio

    Waterborne GPR survey for estimating bottom-sediment variability: A survey on the Po River, Turin, Italy

    Get PDF
    We conducted an integrated geophysical survey on a stretch of the river Po in order to check the GPR ability to discriminate the variability of riverbed sediments through an analysis of the bottom reflection amplitudes. We conducted continuous profiles with a 200-MHzGPR system and a handheld broadband EM sensor.Aconductivity meter and a TDR provided punctual measurements of water conductivity, permittivity, and temperature. The processing and interpretation of the GEM-2 and GPR data were enhanced by reciprocal results and by integration with the punctual measurements of the EM properties of the water. We used a processing flow that improved the radargram images and preserved the amplitude ratios among the different profiles and the frequency content at the bottom reflection signal.We derived the water attenuation coefficient both from the punctual measurements using the Maxwell formulas and from the interpretation of the GPR data, finding an optimal matching between the two values. The GPR measurements provided maps of the bathymetry and of the bottom reflection amplitude. The high reflectivity of the riverbed, derived from the GPR interpretation, agreed with the results of the direct sampling campaign that followed the geophysical survey. The variability of the bottom-reflection-amplitudes map, which was not confirmed by the direct sampling, could also have been caused by scattering phenomena due to the riverbed clasts which are dimensionally comparable to the wavelength of the radar pulse
    corecore