3 research outputs found
Antiviral efficacy of cerium oxide nanoparticles
The authors gratefully acknowledge the financial support by the Estonian Research Council Grants (COVSG2, PRG629, PRG1496), Estonian Centre of Excellence in Research project âAdvanced materials and high-technology devices for sustainable energetics, sensorics and nanoelectronicsâ TK141 (2014-2020.4.01.15-0011) and University of Tartu Development Fund (PLTFYARENG53). The research was partly conducted using the NAMUR+âcore facility funded by projects âCenter of nanomaterials technologies and researchâ (2014-2020.4.01.16-0123) and TT13.Nanomaterials are prospective candidates for the elimination of viruses due to their multimodal mechanisms of action. Here, we tested the antiviral potential of a largely unexplored nanoparticle of cerium dioxide (CeO2). Two nano-CeO2 with opposing surface charge, (+) and (â), were assessed for their capability to decrease the plaque forming units (PFU) of four enveloped and two non-enveloped viruses during 1-h exposure. Statistically significant antiviral activity towards enveloped coronavirus SARS-CoV-2 and influenza virus was registered already at 20 mg Ce/l. For other two enveloped viruses, transmissible gastroenteritis virus and bacteriophage Ï6, antiviral activity was evidenced at 200 mg Ce/l. As expected, the sensitivity of non-enveloped viruses towards nano-CeO2 was significantly lower. EMCV picornavirus showed no decrease in PFU until the highest tested concentration, 2000 mg Ce/l and MS2 bacteriophage showed slight non-monotonic response to high concentrations of nano-CeO2(â). Parallel testing of antiviral activity of Ce3+ ions and SiO2 nanoparticles allows to conclude that nano-CeO2 activity was neither due to released Ce-ions nor nonspecific effects of nanoparticulates. Moreover, we evidenced higher antiviral efficacy of nano-CeO2 compared with Ag nanoparticles. This result along with low antibacterial activity and non-existent cytotoxicity of nano-CeO2 allow us to propose CeO2 nanoparticles for specific antiviral applications. © 2022, The Author(s). --//-- This is an open access article Nefedova A, Rausalu K, Zusinaite E, Vanetsev A, Rosenberg M, Koppel K, Lilla S, Visnapuu M, Smits K, Kisand V, TĂ€tte T, Ivask A., "Antiviral efficacy of cerium oxide nanoparticles", Scientific Reports (2022); 12(1):18746, doi: 10.1038/s41598-022-23465-6 published under the CC BY 4.0 licence.Estonian Research Council Grants (COVSG2, PRG629, PRG1496); Estonian Centre of Excellence in Research TK141 (2014-2020.4.01.15-0011); University of Tartu Development Fund (PLTFYARENG53); Institute of Solid-State Physics, University of Latvia has received funding from the European Union's Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-Teaming Phase 2 under grant agreement No. 739508, project CAMART2
Genetic characterization of populations in the Marquesas Archipelago in the context of the Austronesian expansion
Our exploration of the genetic constitution of Nuku Hiva (n = 51), Hiva Oa (n = 28) and Tahuata (n = 8) of the Marquesas Archipelago based on the analyses of genome-wide autosomal markers as well as high-resolution genotyping of paternal and maternal lineages provides us with information on the origins and settlement of these islands at the fringe of the Austronesian expansion. One widespread theme that emerges from this study is the genetic uniformity and relative isolation exhibited by the Marquesas and Society populations. This genetic homogeneity within East Polynesia groups is reflected in their limited average heterozygosity, uniformity of constituents in the Structure analyses, reiteration of complete mtDNA sequences, marked separation from Asian and other Oceanic populations in the PC analyses, limited differentiation in the PCAs and large number of IBD segments in common. Both the f3 and the Outgroup f3 results provide indications of intra-East Polynesian gene flow that may have promoted the observed intra-East Polynesia genetic homogeneity while ALDER analyses indicate that East Polynesia experienced two gene flow episodes, one relatively recent from Europe that coincides roughly with the European incursion into the region and an early one that may represent the original settlement of the islands by Austronesians. Median Network analysis based on high-resolution Y-STR loci under C2a-M208 generates a star-like topology with East Polynesian groups (especially from the Society Archipelago) in central stem positions and individuals from the different populations radiating out one mutational step away while several Samoan and outlier individuals occupy peripheral positions. This arrangement of populations is congruent with dispersals of C2a-M208 Y chromosomes from East Polynesia as a migration hub signaling dispersals in various directions. The equivalent ages of the C2a-M208 lineage of the populations in the Network corroborate an east to west flow of the most abundant Polynesian Y chromosome