360 research outputs found

    Photometric identification of the periods of the first candidate extragalactic magnetic massive stars

    Full text link
    Galactic stars belonging to the Of?p category are all strongly magnetic objects exhibiting rotationally modulated spectral and photometric changes on timescales of weeks to years. Five candidate Of?p stars in the Magellanic Clouds have been discovered, notably in the context of ongoing surveys of their massive star populations. Here we describe an investigation of their photometric behaviour, revealing significant variability in all studied objects on timescales of one week to more than four years, including clearly periodic variations for three of them. Their spectral characteristics along with these photometric changes provide further support for the hypothesis that these are strongly magnetized O stars, analogous to the Of?p stars in the Galaxy.Comment: 9pages, accepted by A&

    Microlensing optical depth and event rate in the OGLE-IV Galactic plane fields

    Get PDF
    Searches for gravitational microlensing events are traditionally concentrated on the central regions of the Galactic bulge but many microlensing events are expected to occur in the Galactic plane, far from the Galactic Center. Owing to the difficulty in conducting high-cadence observations of the Galactic plane over its vast area, which are necessary for the detection of microlensing events, their global properties were hitherto unknown. Here, we present results of the first comprehensive search for microlensing events in the Galactic plane. We searched an area of almost 3000 square degrees along the Galactic plane (|b|<7, 0<l<50, 190<l<360 deg) observed by the Optical Gravitational Lensing Experiment (OGLE) during 2013-2019 and detected 630 events. We demonstrate that the mean Einstein timescales of Galactic plane microlensing events are on average three times longer than those of Galactic bulge events, with little dependence on the Galactic longitude. We also measure the microlensing optical depth and event rate as a function of Galactic longitude and demonstrate that they exponentially decrease with the angular distance from the Galactic Center (with the characteristic angular scale length of 32 deg). The average optical depth decreases from 0.5×1060.5\times 10^{-6} at l=10 deg to 1.5×1081.5\times 10^{-8} in the Galactic anticenter. We also find that the optical depth in the longitude range 240<l<330 deg is asymmetric about the Galactic equator, which we interpret as a signature of the Galactic warp.Comment: ApJS, in pres

    Microlensing optical depth and event rate in the OGLE-IV Galactic plane fields

    Get PDF
    Searches for gravitational microlensing events are traditionally concentrated on the central regions of the Galactic bulge but many microlensing events are expected to occur in the Galactic plane, far from the Galactic Center. Owing to the difficulty in conducting high-cadence observations of the Galactic plane over its vast area, which are necessary for the detection of microlensing events, their global properties were hitherto unknown. Here, we present results of the first comprehensive search for microlensing events in the Galactic plane. We searched an area of almost 3000 square degrees along the Galactic plane (|b| < 7°, 0° < l < 50°, 190° < l < 360°) observed by the Optical Gravitational Lensing Experiment (OGLE) during 2013–2019 and detected 630 events. We demonstrate that the mean Einstein timescales of Galactic plane microlensing events are on average three times longer than those of Galactic bulge events, with little dependence on the Galactic longitude. We also measure the microlensing optical depth and event rate as a function of Galactic longitude and demonstrate that they exponentially decrease with the angular distance from the Galactic Center (with the characteristic angular scale length of 32°). The average optical depth decreases from 0.5 × 10⁻⁶ at l = 10° to 1.5 × 10⁻⁸ in the Galactic anticenter. We also find that the optical depth in the longitude range 240° < l < 330° is asymmetric about the Galactic equator, which we interpret as a signature of the Galactic warp

    The Araucaria Project: A study of the classical Cepheid in the eclipsing binary system OGLE LMC562.05.9009 in the Large Magellanic Cloud

    Get PDF
    We present a detailed study of the classical Cepheid in the double-lined, highly eccentric eclipsing binary system OGLE-LMC562.05.9009. The Cepheid is a fundamental mode pulsator with a period of 2.988 days. The orbital period of the system is 1550 days. Using spectroscopic data from three 4-8-m telescopes and photometry spanning 22 years, we were able to derive the dynamical masses and radii of both stars with exquisite accuracy. Both stars in the system are very similar in mass, radius and color, but the companion is a stable, non-pulsating star. The Cepheid is slightly more massive and bigger (M_1 = 3.70 +/- 0.03M_sun, R_1 = 28.6 +/- 0.2R_sun) than its companion (M_2 = 3.60 +/- 0.03M_sun, R_2 = 26.6 +/- 0.2R_sun). Within the observational uncertainties both stars have the same effective temperature of 6030 +/- 150K. Evolutionary tracks place both stars inside the classical Cepheid instability strip, but it is likely that future improved temperature estimates will move the stable giant companion just beyond the red edge of the instability strip. Within current observational and theoretical uncertainties, both stars fit on a 205 Myr isochrone arguing for their common age. From our model, we determine a value of the projection factor of p = 1.37 +/- 0.07 for the Cepheid in the OGLE-LMC562.05.9009 system. This is the second Cepheid for which we could measure its p-factor with high precision directly from the analysis of an eclipsing binary system, which represents an important contribution towards a better calibration of Baade-Wesselink methods of distance determination for Cepheids.Comment: Accepted to be published in Ap

    OGLE-2018-BLG-0532Lb: Cold Neptune With Possible Jovian Sibling

    Get PDF
    We report the discovery of the planet OGLE-2018-BLG-0532Lb, with very obvious signatures in the light curve that lead to an estimate of the planet-host mass ratio q=Mplanet/Mhost1×104q=M_{\rm planet}/M_{\rm host}\simeq 1\times10^{-4}. Although there are no obvious systematic residuals to this double-lens/single-source (2L1S) fit, we find that χ2\chi^2 can be significantly improved by adding either a third lens (3L1S, Δχ2=81\Delta\chi^2=81) or second source (2L2S, Δχ2=65\Delta\chi^2=65) to the lens-source geometry. After thorough investigation, we conclude that we cannot decisively distinguish between these two scenarios and therefore focus on the robustly-detected planet. However, given the possible presence of a second planet, we investigate to what degree and with what probability such additional planets may affect seemingly single-planet light curves. Our best estimates for the properties of the lens star and the secure planet are: a host mass M0.25MM\sim 0.25\,M_\odot, system distance DL1D_L\sim 1\,kpc and planet mass mp,1=8Mm_{p,1}= 8\,M_\oplus with projected separation a1,=1.4a_{1,\perp}=1.4\,au. However, there is a relatively bright I=18.6I=18.6 (and also relatively blue) star projected within <50<50\,mas of the lens, and if future high-resolution images show that this is coincident with the lens, then it is possible that it is the lens, in which case, the lens would be both more massive and more distant than the best-estimated values above.Comment: 48 pages, 9 figures, 7 table
    corecore