457 research outputs found

    Dissociative electron attachment to formamide

    Get PDF
    Formamide (HCONH2) is the smallest molecule with a peptide bond and has recently been observed in the interstellar medium (ISM), suggesting that it may be ubiquitous in star-forming regions. There is therefore considerable interest in the mechanisms by which this molecule may form. One method is electron induced chemistry within the icy mantles on the surface of dust grains. In particular it has been recently shown that functional group dependence exists in electron attachment processes giving rise to site selective fragmentation of molecules at the C-H, O-H and N-H bonds at energies well beyond the threshold for the breaking of any of these bonds allowing novel forms of chemistry that have little or no activation barriers, such as are necessary in the ISM. In this poster we present the results of resent studies on dissociative electron attachment (DEA) to formamide DEA using an improved version of a Velocity Map Imaging (VMI) spectrometer comprised of a magnetically collimated and low energy pulsed electron gun, a Faraday cup (to measure the incident current), an effusive molecular beam, a pulsed field ion extraction, a time of flight analyzer and a two-dimensional position sensitive detector consisting of microchannel plate and a phosphor screen. The VMI spectrometer measures the kinetic energy and angular distribution of the fragment anions produced in the dissociative electron attachment process. The kinetic energy measurements provide information on the internal energies of the fragment anions and determine the dissociation limits of the parent negative ion resonant states responsible for the dissociative electron attachment process. The angular distribution measurements provide the information about the symmetry of these negative ion resonant states. We shall present the details, results and conclusions of these measurements during the conference

    Dynamics of the BCS-BEC crossover in a degenerate Fermi gas

    Get PDF
    We study the short-time dynamics of a degenerate Fermi gas positioned near a Feshbach resonance following an abrupt jump in the atomic interaction resulting from a change of external magnetic field. We investigate the dynamics of the condensate order parameter and pair wavefunction for a range of field strengths. When the abrupt jump is sufficient to span the BCS to BEC crossover, we show that the rigidity of the momentum distribution precludes any atom-molecule oscillations in the entrance channel dominated resonances observed in the 40K and 6Li. Focusing on material parameters tailored to the 40K Feshbach resonance system at 202.1 gauss, we comment on the integrity of the fast sweet projection technique as a vehicle to explore the condensed phase in the crossover regionComment: 5 pages, 4 figure

    Absorption, Photoluminescence and Resonant Rayleigh Scattering Probes of Condensed Microcavity Polaritons

    Full text link
    We investigate and compare different optical probes of a condensed state of microcavity polaritons in expected experimental conditions of non-resonant pumping. We show that the energy- and momentum-resolved resonant Rayleigh signal provide a distinctive probe of condensation as compared to, e.g., photoluminescence emission. In particular, the presence of a collective sound mode both above and below the chemical potential can be observed, as well as features directly related to the density of states of particle-hole like excitations. Both resonant Rayleigh response and the absorption and photoluminescence, are affected by the presence of quantum well disorder, which introduces a distribution of oscillator strengths between quantum well excitons at a given energy and cavity photons at a given momentum. As we show, this distribution makes it important that in the condensed regime, scattering by disorder is taken into account to all orders. We show that, in the low density linear limit, this approach correctly describes inhomogeneous broadening of polaritons. In addition, in this limit, we extract a linear blue-shift of the lower polariton versus density, with a coefficient determined by temperature and by a characteristic disorder length.Comment: 16 pages, 11 figures; minor correction

    Polariton condensation with localised excitons and propagating photons

    Get PDF
    We estimate the condensation temperature for microcavity polaritons, allowing for their internal structure. We consider polaritons formed from localised excitons in a planar microcavity, using a generalised Dicke model. At low densities, we find a condensation temperature T_c \propto \rho, as expected for a gas of structureless polaritons. However, as T_c becomes of the order of the Rabi splitting, the structure of the polaritons becomes relevant, and the condensation temperature is that of a B.C.S.-like mean field theory. We also calculate the excitation spectrum, which is related to observable quantities such as the luminescence and absorption spectra.Comment: 5 pages, 4 figures, Corrected typos, replaced figure

    Overhauser effect in individual InP/GaInP dots

    Full text link
    Sizable nuclear spin polarization is pumped in individual InP/GaInP dots in a wide range of external magnetic fields B_ext=0-5T by circularly polarized optical excitation. We observe nuclear polarization of up to ~40% at Bext=1.5T and corresponding to an Overhauser field of ~1.2T. We find a strong feedback of the nuclear spin on the spin pumping efficiency. This feedback, produced by the Overhauser field, leads to nuclear spin bi-stability at low magnetic fields of Bext=0.5-1.5T. We find that the exciton Zeeman energy increases markedly, when the Overhauser field cancels the external field. This counter-intuitive result is shown to arise from the opposite contribution of the electron and hole Zeeman splittings to the total exciton Zeeman energy

    Overhauser effect in individual InP/GaInP dots

    Get PDF
    Sizable nuclear spin polarization is pumped in individual InP/GaInP dots in a wide range of external magnetic fields B_ext=0-5T by circularly polarized optical excitation. We observe nuclear polarization of up to ~40% at Bext=1.5T and corresponding to an Overhauser field of ~1.2T. We find a strong feedback of the nuclear spin on the spin pumping efficiency. This feedback, produced by the Overhauser field, leads to nuclear spin bi-stability at low magnetic fields of Bext=0.5-1.5T. We find that the exciton Zeeman energy increases markedly, when the Overhauser field cancels the external field. This counter-intuitive result is shown to arise from the opposite contribution of the electron and hole Zeeman splittings to the total exciton Zeeman energy

    Coherence properties and luminescence spectra of condensed polaritons in CdTe microcavities

    Full text link
    We analyse the spatial and temporal coherence properties of a two-dimensional and finite sized polariton condensate with parameters tailored to the recent experiments which have shown spontaneous and thermal equilibrium polariton condensation in a CdTe microcavity [J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymanska, R. Andre, J.L. Staehli, et al., Nature 443 (7110) (2006) 409]. We obtain a theoretical estimate of the thermal length, the lengthscale over which full coherence effectively exists (and beyond which power-law decay of correlations in a two-dimensional condensate occurs), of the order of 5 micrometers. In addition, the exponential decay of temporal coherence predicted for a finite size system is consistent with that found in the experiment. From our analysis of the luminescence spectra of the polariton condensate, taking into account pumping and decay, we obtain a dispersionless region at small momenta of the order of 4 degrees. In addition, we determine the polariton linewidth as a function of the pump power. Finally, we discuss how, by increasing the exciton-photon detuning, it is in principle possible to move the threshold for condensation from a region of the phase diagram where polaritons can be described as a weakly interacting Bose gas to a region where instead the composite nature of polaritons becomes important.Comment: 7 pages, 6 figure

    Giant Stark effect in the emission of single semiconductor quantum dots

    Full text link
    We study the quantum-confined Stark effect in single InAs/GaAs quantum dots embedded within a AlGaAs/GaAs/AlGaAs quantum well. By significantly increasing the barrier height we can observe emission from a dot at electric fields of -500 kV/cm, leading to Stark shifts of up to 25 meV. Our results suggest this technique may enable future applications that require self-assembled dots with transitions at the same energy
    • …
    corecore