11 research outputs found

    Algebraic synchronization criterion and computing reset words

    Full text link
    We refine results about relations between Markov chains and synchronizing automata. We express the condition that an automaton is synchronizing in terms of linear algebra, and obtain upper bounds for the reset thresholds of automata with a short word of a small rank. The results are applied to make several improvements in the area. We improve the best general upper bound for reset thresholds of finite prefix codes (Huffman codes): we show that an n-state synchronizing decoder has a reset word of length at most O(n log3 n). Also, we prove the Černý conjecture for n-state automata with a letter of rank at most 3√6n-6. In another corollary, based on the recent results of Nicaud, we show that the probability that the Čern conjecture does not hold for a random synchronizing binary automaton is exponentially small in terms of the number of states. It follows that the expected value of the reset threshold of an n-state random synchronizing binary automaton is at most n7/4+o(1). Moreover, reset words of the lengths within our bounds are computable in polynomial time. We present suitable algorithms for this task for various classes of automata for which our results can be applied. These include (quasi-)one-cluster and (quasi-)Eulerian automata. © Springer-Verlag Berlin Heidelberg 2015

    Algebraic synchronization criterion and computing reset words

    Full text link
    We refine a uniform algebraic approach for deriving upper bounds on reset thresholds of synchronizing automata. We express the condition that an automaton is synchronizing in terms of linear algebra, and obtain new upper bounds for automata with a short word of small rank. The results are applied to make several improvements in the area. In particular, we improve the upper bound for reset thresholds of finite prefix codes (Huffman codes): we show that an n-state synchronizing decoder has a reset word of length at most O(nlog3n). In addition to that, we prove that the expected reset threshold of a uniformly random synchronizing binary n-state decoder is at most O(nlog n). We prove the Černý conjecture for n-state automata with a letter of rank ≤6n−63. In another corollary, we show that the probability that the Černý conjecture does not hold for a random synchronizing binary automaton is exponentially small in terms of the number of states, and that the expected value of the reset threshold is at most n3/2+o(1). Moreover, all of our bounds are constructible. We present suitable polynomial algorithms for the task of finding a reset word of length within our bounds. © 201

    Split Moves for Monte-Carlo Tree Search

    Get PDF
    In many games, moves consist of several decisions made by the player. These decisions can be viewed as separate moves, which is already a common practice in multi-action games for efficiency reasons. Such division of a player move into a sequence of simpler / lower level moves is called splitting. So far, split moves have been applied only in forementioned straightforward cases, and furthermore, there was almost no study revealing its impact on agents' playing strength. Taking the knowledge-free perspective, we aim to answer how to effectively use split moves within Monte-Carlo Tree Search (MCTS) and what is the practical impact of split design on agents' strength. This paper proposes a generalization of MCTS that works with arbitrarily split moves. We design several variations of the algorithm and try to measure the impact of split moves separately on efficiency, quality of MCTS, simulations, and action-based heuristics. The tests are carried out on a set of board games and performed using the Regular Boardgames General Game Playing formalism, where split strategies of different granularity can be automatically derived based on an abstract description of the game. The results give an overview of the behavior of agents using split design in different ways. We conclude that split design can be greatly beneficial for single- as well as multi-action games

    Predicting Animal Welfare Labels from Pork Fat Using Raman Spectroscopy and Chemometrics

    No full text
    The awareness of the origin of meat that people consume is rapidly increasing today and with that increases the demand for fast and accurate methods for its distinction. In this work, we present for the first time the application of Raman spectroscopy using a portable spectrometer for the classification of pork. Breeding conditions were distinguished from spectral differences of adipose tissues. The pork samples were obtained from Dutch vendors, from supermarkets with quality marks of 1 and 3 stars, and from a local butcher shop. In total, 60 fat samples were examined using a fiber-optic-coupled Raman spectrometer. Recorded spectra were preprocessed before being subjected to multivariate statistical analysis. An initial data exploration using Principal Component Analysis (PCA) revealed a separation of adipose tissue samples between the lower supermarket quality grade and the samples from the local butcher. Moreover, predictive modeling using Partial Least Squares Discriminant Analysis (PLS-DA) resulted in 96.67% classification accuracy for all three sources, demonstrating the suitability of the presented method for intraspecies meat classification and the potential on-site use

    Words of Minimum Rank in Deterministic Finite Automata

    No full text
    International audienceThe rank of a word in a deterministic finite automaton is the size of the image of the whole state set under the mapping defined by this word. We study the length of shortest words of minimum rank in several classes of complete deterministic finite automata, namely, strongly connected and Eulerian automata. A conjecture bounding this length is known as the Rank Conjecture, a generalization of the well known Černý Conjecture. We prove upper bounds on the length of shortest words of minimum rank in automata from the mentioned classes, and provide several families of automata with long words of minimum rank. Some results in this direction are also obtained for automata with rank equal to period (the greatest common divisor of lengths of all cycles) and for circular automata
    corecore