7 research outputs found

    Extracellular vesicles transmit epithelial growth factor activity in the intestinal stem cell niche.

    Get PDF
    Extracellular vesicles (EV) are membrane-surrounded vesicles that represent a novel way of intercellular communication by carrying biologically important molecules in a concentrated and protected form. The intestinal epithelium is continuously renewed by a small proliferating intestinal stem cell population (ISC), residing at the bottom of the intestinal crypts in a specific microenvironment, the stem cell niche. By using 3D mouse and human intestinal organoids, we show that intestinal fibroblast-derived EVs are involved in forming the ISC niche by transmitting Wnt and epidermal growth factor (EGF) activity. With a mouse model that expresses EGFP in the Lgr5+ ISCs we prove that loss in ISC number in the absence of EGF is prevented by fibroblast-derived EVs. Furthermore, we demonstrate that intestinal fibroblast-derived EVs carry EGF family members, such as amphiregulin. Mechanistically, blocking EV-bound amphiregulin inhibited the EV-induced survival of organoids. In contrast, EVs have no role in transporting R-Spondin, a critical niche factor amplifying Wnt signalling. Collectively, we prove the important role of fibroblast-derived EVs as a novel transmission mechanism of factors in the normal ISC niche. © AlphaMed Press 2019 SIGNIFICANCE STATEMENT: Intestinal stem cells (ISC) reside in a specific microenvironment in the intestinal epithelium, the ISC niche. Although they are critical in maintaining tissue integrity, the transmission of ISC niche factors is still not well known. Extracellular vesicles (EV) carry biologically active molecules in a membrane-surrounded form, thus, representing a novel way of intercellular communication. Here we provide evidence that fibroblast-derived EVs transport epidermal growth factor activity, one of the critical niche factors, by carrying amphiregulin, thus, they represent a novel way of intercellular signal transmission mechanism for normal ISCs

    Detection and proteomic characterization of extracellular vesicles in human pancreatic juice

    Get PDF
    AIMS: The prognosis of patients with pancreatic cancer has remained virtually unchanged with a high mortality rate compared to other types of cancers. An earlier detection would provide a time window of opportunity for treatment and prevention of deaths. In the present study we investigated extracellular vesicle (EV)-associated potential biomarkers for pancreatic cancer by directly assessing EV size-based subpopulations in pancreatic juice samples of patients with chronic pancreatitis or pancreatic cancer. In addition, we also studied blood plasma and pancreatic cancer cell line-derived EVs. METHODS: Comparative proteomic analysis was performed of 102EV preparations from human pancreatic juices, blood, and pancreatic cancer cell lines Capan-1 and MIA PaCa-2. EV preparations were also characterized by electron microscopy, tunable resistive pulse sensing, and flow cytometry. RESULTS: Here we describe the presence of EVs in human pancreatic juice samples. Pancreatic juice EV-associated proteins that we identified as possible candidate markers for pancreatic cancer included mucins, such as MUC1, MUC4, MUC5AC, MUC6 and MUC16, CFTR, and MDR1 proteins. These candidate biomarkers could also be detected by flow cytometry in EVs found in pancreatic juice and those secreted by pancreatic cancer cell lines. CONCLUSIONS: Together our data show that detection and characterization of EVs directly in pancreatic juice is feasible and may prove to be a valuable source of potential biomarkers of pancreatic cancer

    Detection and proteomic characterization of extracellular vesicles in human pancreatic juice

    Get PDF
    AIMS: The prognosis of patients with pancreatic cancer has remained virtually unchanged with a high mortality rate compared to other types of cancers. An earlier detection would provide a time window of opportunity for treatment and prevention of deaths. In the present study we investigated extracellular vesicle (EV)-associated potential biomarkers for pancreatic cancer by directly assessing EV size-based subpopulations in pancreatic juice samples of patients with chronic pancreatitis or pancreatic cancer. In addition, we also studied blood plasma and pancreatic cancer cell line-derived EVs. METHODS: Comparative proteomic analysis was performed of 102EV preparations from human pancreatic juices, blood, and pancreatic cancer cell lines Capan-1 and MIA PaCa-2. EV preparations were also characterized by electron microscopy, tunable resistive pulse sensing, and flow cytometry. RESULTS: Here we describe the presence of EVs in human pancreatic juice samples. Pancreatic juice EV-associated proteins that we identified as possible candidate markers for pancreatic cancer included mucins, such as MUC1, MUC4, MUC5AC, MUC6 and MUC16, CFTR, and MDR1 proteins. These candidate biomarkers could also be detected by flow cytometry in EVs found in pancreatic juice and those secreted by pancreatic cancer cell lines. CONCLUSIONS: Together our data show that detection and characterization of EVs directly in pancreatic juice is feasible and may prove to be a valuable source of potential biomarkers of pancreatic cancer

    High CD142 Level Marks Tumor-Promoting Fibroblasts with Targeting Potential in Colorectal Cancer

    Get PDF
    Colorectal cancer (CRC) has a high incidence and is one of the leading causes of cancer-related death. The accumulation of cancer-associated fibroblasts (CAF) induces an aggressive, stem-like phenotype in tumor cells, and it indicates a poor prognosis. However, cellular heterogeneity among CAFs and the targeting of both stromal and CRC cells are not yet well resolved. Here, we identified CD142high fibroblasts with a higher stimulating effect on CRC cell proliferation via secreting more hepatocyte growth factor (HGF) compared to CD142low CAFs. We also found that combinations of inhibitors that had either a promising effect in other cancer types or are more active in CRC compared to normal colonic epithelium acted synergistically in CRC cells. Importantly, heat shock protein 90 (HSP90) inhibitor selected against CD142high fibroblasts, and both CRC cells and CAFs were sensitive to a BCL-xL inhibitor. However, targeting mitogen-activated protein kinase kinase (MEK) was ineffective in fibroblasts, and an epigenetic inhibitor selected for a tumor cell population with markers of aggressive behavior. Thus, we suggest BCL-xL and HSP90 inhibitors to eliminate cancer cells and decrease the tumor-promoting CD142high CAF population. This may be the basis of a strategy to target both CRC cells and stromal fibroblasts, resulting in the inhibition of tumor relapse
    corecore