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Extracellular vesicles transmit epithelial growth factor activity
in the intestinal stem cell niche
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Abstract

Extracellular vesicles (EV) are membrane-surrounded vesicles that represent a novel

way of intercellular communication by carrying biologically important molecules in a

concentrated and protected form. The intestinal epithelium is continuously renewed

by a small proliferating intestinal stem cell (ISC) population, residing at the bottom of

the intestinal crypts in a specific microenvironment, the stem cell niche. By using 3D

mouse and human intestinal organoids, we show that intestinal fibroblast-derived

EVs are involved in forming the ISC niche by transmitting Wnt and epidermal growth

factor (EGF) activity. With a mouse model that expresses EGFP in the Lgr5+ ISCs, we

prove that loss in ISC number in the absence of EGF is prevented by fibroblast-

derived EVs. Furthermore, we demonstrate that intestinal fibroblast-derived EVs

carry EGF family members, such as amphiregulin. Mechanistically, blocking EV-bound

amphiregulin inhibited the EV-induced survival of organoids. In contrast, EVs have no

role in transporting R-Spondin, a critical niche factor amplifying Wnt signaling. Collec-

tively, we prove the important role of fibroblast-derived EVs as a novel transmission

mechanism of factors in the normal ISC niche.
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1 | INTRODUCTION

The intestinal epithelium is continuously renewed by a proliferating

stem cell population, residing at the bottom of the intestinal crypts in

a specific microenvironment, the stem cell niche. The intestinal stem

cell (ISC) population can be characterized by the expression of the

Lgr5 protein1 that acts by mediating Wnt signal enhancement via sol-

uble R-Spondin proteins.2 ISCs critically depend on niche factors,

derived from the microenvironment, such as from intestinal fibroblasts

or Paneth cells in the small intestine. Lgr5+ mouse small intestinal

crypt stem cells self-organize into continuously renewing organoids in

3D matrix ex vivo when stimulated by the niche factors epidermal

growth factor (EGF), the bone morphogenic protein (Bmp) pathway

inhibitor noggin and the Wnt-agonist R-Spondin1.3,4 In addition,

colonic organoids require the addition of Wnt proteins, such as

Wnt3a as well.3 Unlike the traditional cell lines, these 3D cultures
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maintain the spatial cellular composition similar to the in vivo situation

and they produce all the differentiated cell types, thus, providing an

excellent and well-controlled experimental system to dissect factors

important in shaping the intestinal epithelium.

Extracellular vesicles (EVs) are membrane-enclosed structures,

secreted by both normal and cancer cells. The largest EVs are the apo-

ptotic bodies released by cells undergoing apoptosis. Microvesicles

are directly shed from the plasma membrane, whereas exosomes

(EXs), the best characterized and smallest EV subpopulation, are

derived from the multivesicular bodies (MVB) of the endosomal com-

partment and they are released from cells upon fusion of the MVBs

with the plasma membrane.5 Since the pure isolation of different EV

subpopulations according to their intracellular origin is not yet

resolved, EVs are often categorized based on their size as small and

large EVs.6 EVs transfer a wide array of biologically important mole-

cules, such as proteins, lipids, mRNAs, and miRNAs in a concentrated

form when they target the recipient cells,5,7 and the roles of mesen-

chymal stem cell-derived and mesenchymal stromal cell-derived EVs,

for example, have already been intensively studied.8,9

Despite the increasing knowledge how ISC niche is formed, not many

studies have so far been published on the way of transmitting ISC niche

factors. In a recent report, the short-range Wnt gradient among ISCs and

Paneth cells has been visualized.10 Importantly, EVs provide locally a high

concentration of the delivered molecules; thus, they may be a very efficient

transmission tool in the ISC niche. In line with this notion, previous studies

showed that macrophage-derived EVs enhance stem cell survival after radi-

ation injury via delivering Wnt proteins.11 Furthermore, a recent study

reported that EVs are critically involved in the regeneration of the intestinal

epithelium after injuries by transporting Annexin A1.12 However, the role

of EVs in shaping the ISC niche under homeostatic condition is still poorly

understood. In the present study, we have found that intestinal fibroblasts,

a critical cell type in shaping the ISC niche, release EVs with Wnt and EGF

activity; furthermore, EGF family members, such as amphiregulin, are active

on the surface of EVs. All together, these results show that EVs represent a

novel mechanism of transmitting ISC niche signals and fibroblast-derived

EVs critically contribute to maintaining the ISC phenotype.

2 | MATERIALS AND METHODS

2.1 | Cell culture

Human colon fibroblasts (American Tissue Culture Collection, ATCC-

1459) (HCFs) were cultured in DMEM with 4500 g/L glucose (DMEM

high glucose, Gibco-Thermo Fisher Scientific, Waltham, MA), 10% fetal

bovine serum (FBS; Biosera, France), glutamine and Penicillin/Streptomy-

cin (Gibco). When collecting EVs, cells were washed with phosphate-

buffered saline (PBS) three times and cultured in serum-free medium or in

incomplete SI medium for 2 days. Incomplete SI medium contained

advanced Dulbecco's modified Eagle's medium (DMEM)/F12 with N2

and B27 supplement (Gibco), 10 mM N-2-hydroxyethylpiperazine-N0-

2-ethanesulfonic acid (HEPES; Sigma, St Louis, MO), 1 μMN-Acetyl-

Cysteine (Sigma), glutamine, penicillin/streptomycin, and antibiotic/

antimycotic mix (Gibco). Cells were then removed from tissue culture

plates (Eppendorf, Austria) with TrypLE (Gibco) and counted in a Burker

chamber. Cell cultures were tested for mycoplasma contamination with

Hoechst staining, and they were negative in our experiments. We used

only cells with low passage number (<p9 after obtaining from ATCC).

2.2 | Isolation of murine small intestinal fibroblasts

Small intestines were opened, washed with PBS, and cut into small pieces

(<0.5 cm) in PBS. After extensive washing steps, tissue pieces were incu-

bated in 2 mM ethylenediaminetetraacetic acid (EDTA) for 30 minutes at

4�C. Crypts with epithelial cells were then mechanically removed, and tissue

pieces were washed to replace EDTA. They were suspended in DMEM

high glucose, 10% FBS, antibiotic/antimycotic mix and glutamine containing

75 U/mL collagenase II (Sigma), 125 μg/mL collagenase and dispase mix

(Roche, Switzerland) and incubated for 60–120 minutes at 37�C. Superna-

tant with single cells was centrifuged at 300g for 5 minutes, washed twice

with PBS, and cells were then cultured in fibroblast medium (DMEM high

glucose supplemented with 15% FBS, ciprofloxacin [Sigma, 1:200 dilution],

antibiotic/antimycotic mix and glutamine).

2.3 | Mouse intestinal crypt cultures

The veterinary authority (Pest County Government Office, Hungary)

approved the experiments with mice. Intestinal crypts from C57Bl/6J

(Jackson Laboratory) or Lgr5-EGFP-IRES-CreER mice (Jackson Laboratory,

008875) were isolated according to previously published methods.4,13

Approximately 1000 crypts were embedded into growth factor-reduced,

phenol red-free Matrigel (Corning, NY, 20 μL/well or 40 μL/well in 48 or

24-well plates, respectively) and cultured in incomplete SI medium sup-

plemented with 100 ng/mL noggin (Peprotech, Rocky Hill, NJ), 50 ng/mL

EGF (Peprotech), and 500 ng/mL mouse R-Spondin1 (R&D Systems-

Bio-Techne, Minneapolis, MN) (complete SI medium). In case of colonic

crypts, 100 ng/mL murine Wnt3a (Peprotech) was included as well

(colonic medium). Organoids were removed from Matrigel in every

Significance Statement

Intestinal stem cells (ISC) reside in a specific microenviron-

ment in the intestinal epithelium, the ISC niche. Although

they are critical in maintaining tissue integrity, the transmis-

sion of ISC niche factors is still not well known. Extracellular

vesicles (EV) carry biologically active molecules in a

membrane-surrounded form, thus, representing a novel way

of intercellular communication. The present article provides

evidence that fibroblast-derived EVs transport epidermal

growth factor activity, one of the critical niche factors, by

carrying amphiregulin; thus, they represent a novel way of

intercellular signal transmission mechanism for normal ISCs.
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4–6 days, mechanically disrupted by pipetting, centrifuged at 300g for

5 minutes, and they were then embedded into new Matrigel. In some

experiments, the GSK-3 inhibitor CHIR99021 (Sigma) was dissolved in

DMSO (Sigma) and applied at 3 μM for >3 days.

To produce Apc-mutant organoids, we used a previously published

sgRNA sequence (sgRNA4),14 and cloned it into the lentiCRISPR v2 plasmid

(Addgene 52961). Apc-mutant organoids were produced according to

Schwank et al and Szvicsek et al,14,15 and they were selected by removing

R-Spondin1, EGF, and noggin 3 days after transfection. Apc-mutant

organoids were used >6 days culturing them without growth factors.

2.4 | Human colon organoid cultures

The Medical Research Council of Hungary (ETT-TUKEB) approved all

experiments with human samples, and informed consent was obtained

from the patients (men aged 63, 76, and 68 years). Normal colon tissue

samples were collected from patients undergoing colorectal cancer surgi-

cal operation, where a distance of more than 3 cm to the tumors was

used.3 Human colonic crypts were isolated according to Sato et al3 with

some modifications. Briefly, samples were cut into <0.5 cm pieces,

washed with PBS five times, and incubated in PBS + 2 mM EDTA (Sigma)

for 30 minutes at 4�C in tubes that had been coated with 0.1% bovine

serum albumin (BSA, Sigma). Fractions were then taken with PBS + 0.1%

BSA into tubes containing 3 mL advanced DMEM/F12 medium (Gibco).

Fractions with crypts were embedded into Matrigel droplets (20 μL/well,

48-well plate, Eppendorf) and cultured in human organoid medium con-

taining advanced DMEM/F12 with N2 and B27 supplements, 10 mM

HEPES, 1 mM N-Acetyl-Cysteine, glutamine, antibiotic/antimycotic mix,

500 nM A83-01 (Sigma), 10 μM SB202190-Monohydrochloride (Sigma),

50 ng/mL human EGF, 100 ng/mL human noggin (Peprotech), 1000 ng/

mL human R-Spondin1 (R&D Systems), 100 ng/mL murine Wnt3a

(Peprotech), and 1 nM gastrin (Sigma). For treatment with EVs, organoids

were isolated from Matrigel by centrifugation at 300g for 5 minutes,

mechanically disrupted and embedded into 3D matrix again.

2.5 | Flow cytometry

Cells were removed with TrypLE (Gibco) and they were fixed with 4%

paraformaldehyde (PFA) for 20 minutes. They were permeabilized

with 0.1% saponin (BD Biosciences, Franklin Lakes, NJ) and labeled

with αSma antibody for 30 minutes and then with Alexa 488-labeled

secondary antibody for 20 minutes. After washing in PBS and centri-

fugation at 300g for 5 minutes, 10 000 events were measured on a

FACSCalibur flow cytometer (BD Biosciences). The list of antibodies

can be found in the Supporting Information Appendix.

2.6 | EV isolation and functional tests with EVs

Cell culture supernatants were collected after 2 days and serially cen-

trifuged at 300g for 5 minutes, 2000g for 20 minutes, and 12 500g for

20 minutes to remove cells, cell debris, and the larger EVs. EVs were

isolated with ultracentrifugation (UC) at 100 000g for 70 minutes at

4�C, the pellet was washed with PBS, ultracentrifuged again and then

resuspended in culture media. EVs from approximately 3 × 105 fibro-

blasts were added to each well with organoids (20 μL Matrigel, 200 μL

total medium). This contained 4.8 × 108 (±16.3% SD, n = 3) particles

according to Nanoparticle Tracking Analysis measurements (see below).

In some experiments, EVs were incubated with 10 μg/mL control goat

IgG or anti-amphiregulin antibody (see Supporting Information Appen-

dix) for 1 hour in 20 μL medium before applying them to organoids.

2.7 | Tunable resistive pulse sensing (qNano)
measurements

Supernatants from fibroblasts cultured in serum-free fibroblast medium

were collected after 48 hours, centrifuged at 300g for 5 minutes, at

2000g for 20 minutes, and at 12 500g for 20 minutes. EVs were col-

lected by UC, the pellet was resuspended in DMEM medium and then

further diluted in PBS. Samples were applied to tunable resistance pulse

sensing analysis (qNano, Izon, UK), minimum 500 data points were col-

lected, or samples were measured for 5 minutes. CPC200B (Izon) beads

were used for particle size and concentration calibration, and they were

diluted in the same ratio of medium and PBS when applying mem-

branes with a pore size of 200 nm (analysis range: 85–500 nm).

2.8 | Nanoparticle tracking analysis

Samples after UC were resuspended in 1 mL PBS, and particle size distri-

bution and concentration were recorded on a ZetaView Z-NTA instru-

ment (Particle Metrix, Germany). For each measurement, 11 cell

positions were scanned at 25�C with the following camera settings: auto

expose, gain: 28.8, offset: 0, shutter: 100, sensitivity: 80. The videos

were analyzed by the ZetaView Analyze software 8.05.10 with a mini-

mum area of 5, maximum area of 1000, and a minimum brightness of 20.

2.9 | Protein concentration measurement and
Simple Western (WES) analysis

HCFs were cultured in serum-free medium for 2 days, and the cell

number was counted by a Burker chamber. EVs were pelleted with

UC at 100 000 g for 70 minutes at 4�C, they were washed with PBS,

ultracentrifuged again, and then dissolved in 19 μL CelLytic M buffer

(Sigma) and 1 μL cOmplete Protease Inhibitor Cocktail (Roche). The

lysates were subjected to two freeze-thaw cycles, they were soni-

cated for 10 minutes, centrifuged at 14,000g for 15 minutes, and pro-

tein concentrations of the supernatants were measured with the

Micro BCA Protein Assay Kit (Thermo Fisher Scientific, Waltham, MA)

and NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scien-

tific). Of note, 3 μL of the lysates containing 1.5 μg protein were

applied to capillary-based Simple Western analysis WES
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(ProteinSimple, San Jose, CA) according to the manufacturer's instruc-

tions. As a control, we used 3 μL of the lysate prepared from ultra-

centrifuged serum-free medium. The following kits were used

(ProteinSimple): SM-W004 (for analysis between 12 and 230 kDa),

DM-TP01 total protein detection kit, DM-001 anti-rabbit detection

kit, DM-006 anti-goat detection kit, and PS-ST02EZ-8 EZ Standard

Pack 2. The primary antibodies are listed in the Supporting Informa-

tion Appendix. The results were analyzed by the Compass for SW

4.0.1 software (ProteinSimple).

2.10 | Human EV detection by anti-CD63 or anti-
CD81-coated beads

Fibroblast culture supernatants were harvested after 2 days. They were

centrifuged at 300g for 5 minutes, 2000g for 20 minutes, and 12 500g

for 20 minutes. EVs were then bound to antibody-coated beads that

had been blocked with 0.1% BSA (Sigma) for 30 minutes. Of note,

20 and 6 μL of anti-CD63 coated beads (Thermo Fisher Scientific,

10606D) or anti-CD81 coated beads (Thermo Fisher Scientific,

10616D) were added to 200 μL supernatant, respectively. Beads were

then magnetically separated after overnight shaking at 4�C, washed

with PBS three times, and were labeled with FITC-anti-CD81 or PE-

anti-CD63 for 20 minutes.

In some experiments, the EV pellet after UC was resuspended in

500 μL PBS and incubated with anti-CD63 coated beads overnight. After

washing, primary antibodies against EGF family members were applied in

50 μL PBS + 1% BSA for 2 hours at room temperature (RT), and the Alexa

488-labeled secondary antibodies were used for 1 hour. Ten thousand

beads were measured with a FACSCalibur instrument (BD Biosciences).

2.11 | Mouse EV detection by anti-CD81-coated
beads

Ten microliters of anti-CD81 antibody were bound to 2 mg magnetic

beads by the Dynabeads Antibody Coupling Kit (Invitrogen-Thermo

Fisher Scientific) according to the manufacturer's instructions. One

microliter of the antibody-coated beads was applied to 200 μL super-

natant. Beads with EVs were detected by PE-anti-CD81 antibody, and

the percentage of positive beads was measured by flow cytometry.

2.12 | Immunostaining

Paraffin-embedded tissue blocks from the intestines of mice were

cut. The 4 μm sections were deparaffinized; they were treated with

high pH target retrieval solution (Tris-EDTA buffer with 10 mM Tris

base, 1 mM EDTA solution, 0.05% Tween 20, pH 9.0) in a micro-

wave oven at 700 W for 5 minutes and at 400 W for 10 minutes.

For immunostaining, the sections were blocked in 0.1 M TrisHCl,

0.15 M NaCl, 2% FBS for 30 minutes, and the primary antibody was

used overnight at 4�C. The sections were then washed with TNT

buffer (0.1 M TRIS pH = 7.4, 0.15 M sodium chloride, 0.05%

Tween20), incubated with secondary antibodies for 1 hour at RT

and mounted with ProLong Diamond antifade mountant containing

DAPI (Thermo Fisher Scientific).

For immunostaining of cells, they were fixed in 4% PFA for

20 minutes, blocking and permeabilization were carried out in blocking

buffer (PBS with 0.1% BSA, 5% FBS and 0.1% Triton X-100). After wash-

ing with blocking buffer, cells were incubated with primary antibodies at

4�C overnight and then in secondary antibodies for 2 hours at RT in

blocking buffer. Samples were covered with ProLong Diamond antifade

mountant containing DAPI (Thermo Fisher Scientific), and they were

imaged with a Nicon Eclipse 80i fluorescent microscope.

2.13 | Whole-mount staining

Organoids were cultured in 4-well or 8-well chamber slides

(BD Biosciences), fixed in 4% PFA for 30 minutes, washed with PBS

and blocked and permeabilized in whole-mount blocking buffer

(WMBB: 5% FBS, 0.2% BSA, 0.3% Triton X-100 in PBS) for

30 minutes. Primary antibodies were used at 4�C overnight in WMBB.

After washing in PBS + 0.3% Triton X-100 + 4% NaCl and overnight

incubation with labeled secondary antibodies, the organoids were

mounted with ProLong Diamond antifade mountant containing DAPI

(Thermo Fisher Scientific) and imaged with a Zeiss LSM800 confocal

microscope. Images were processed by the ImageJ software.

2.14 | Statistical analysis

Student's paired or unpaired t-test, analysis of variance, and Tukey post hoc

test or Kruskal-Wallis with Dunn post hoc test were used with *P < .05,

**P < .01, and ***P < .005 significance levels. Microsoft Excel and SPSS ver-

sion 25 software were used for statistical evaluation. Mean and SD values

are shown with n = 3-5 biological replicates, unless otherwise indicated.

3 | RESULTS

3.1 | Intestinal fibroblasts secrete EVs

To study the EV-mediated signal transmission in the ISC niche, we used

commercially available normal HCFs and isolated intestinal fibroblasts

from C57Bl/6J mice (murine small intestinal fibroblast—MIF) as well.

HCF cultures were uniformly positive for αSma (Figure S1a,b), thus,

confirming the purity of the cultures. Previous studies have shown that

beads coated with antibodies specific for EV markers, such as CD63 or

CD81, can capture EVs from cell and organoid culture supernatant and

they can then be detected by flow cytometry.15,16 We detected EVs

from HCFs with anti-CD63 or anti-CD81-coated beads (Figure S1c,d)

and, importantly, beads covered with streptavidin were unable to bind

EVs, thus, confirming the specificity of the method (Figure S1d). In addi-

tion, EVs bound to anti-CD63-coated beads were negative for
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Annexin V, a marker of some specific larger EV populations (Figure S1d).

Transmission electron microscopy proved the presence of EVs in the

ultracentrifuged pellet of HCF-derived supernatant (Figure S1e); further-

more, tunable resistive pulse sensing and nanoparticle tracking analysis

that are standard methods for EV characterization, showed the shift of EV

size toward the smaller range in EV preparates (Figure S1f,g). Similarly,

MIF cultures were positive for αSma (Figure S1h), and CD81+ EVs were

detected in their culture supernatants by antibody-coated beads

(Figure S1i). Collectively, these data show that both human and mouse

intestinal fibroblasts secrete EVs into the culture medium.

3.2 | Intestinal fibroblast-derived EVs do not
modify ISC activity in the presence of exogenously
added ISC niche factors

ISCs reside at the crypt bottoms; they are responsible for maintaining

the crypt structure and for producing all other intestinal epithelial cell

types, leading to the budding of the organoids. Thus, counting the living,

budding, or dead organoids provides a robust and easy method to

detect ISC activity. The exogenously added EGF, the Bmp inhibitor nog-

gin, and the Wnt-agonist R-Spondin1 are critical for maintaining the ISC

population in small intestinal (SI) organoids.4 Importantly, when the

medium from HCFs was ultracentrifuged, the pellet fraction, but not the

supernatant, contained EVs (Figure S2a). Interestingly, the concentrated

HCF or MIF-derived EVs, isolated by UC, did not influence the number

of surviving or budding SI organoids (Figure S2b-c). Thus, neither colon

nor small intestinal fibroblast-derived EVs carry molecules that could

have an additional or inhibitory effect in the formation of the ISC niche

when all the essential niche factors are present.

3.3 | Fibroblast-derived EVs do not modify the
effect of IFNγ or TNFα acting in the ISC niche

To test whether fibroblast-derived EVs have a combinatorial effect

with other factors acting in the ISC niche, we selected TNFα and IFNγ,

since they have a well-known effect on ISCs and/or the intestinal

crypt region and both play a central role in the intestinal immune

responses.17,18 As expected, IFNγ led to the death of SI organoids18

and TNFα resulted in the appearance of cyst-like organoids without

modifying the proportion of active caspase-3+ apoptotic cells

(Figure S2d-f).17 Interestingly, however, the addition of fibroblast-

derived EVs did not have any rescue effect on these measured param-

eters either with IFNγ or in the presence of TNFα (Figure S2d-f).

3.4 | Fibroblast-derived EVs carry EGF activity in
the ISC niche

Wnt factors are highly hydrophobic, and a recent work reported that

Wnt activity is enhanced when they are added in liposomes.19 To

study whether some of the niche factors travel on EVs, first we

focused on Wnt proteins in the ISC niche. In contrast to SI organoids

where Paneth cells produce Wnt proteins, colon organoids critically

depend on external Wnt factors in cultures due to the lack of this cell

type.3 HCF-derived EVs showed a marked rescue effect in colon

organoid survival when Wnt3a lacked from the culture medium

(Figure 1A,B), demonstrating that EVs critically contribute to the nor-

mal Wnt activity in the ISC niche.

To test whether some of the other critical ISC niche factors are

transmitted by fibroblast-derived EVs, we removed R-Spondin1, nog-

gin or EGF from culture medium. As expected, the lack of one of these

factors led to a markedly reduced organoid survival at day 4, showing

the disappearance of ISC function (Figure 2A-C). Interestingly,

whereas fibroblast EVs did not rescue the reduced survival of

organoids when R-Spondin1 or noggin lacked (Figure 2A), we

observed an extensive rescue effect for EGF not only in SI, but in

colon organoids as well when applying HCF EVs (Figure 2B-D). Impor-

tantly, we confirmed this effect in SI organoids with MIF-derived EVs

(Figure 2E), suggesting that both colonic and small intestinal fibro-

blasts are able to deliver EGF activity. Similarly, fibroblast-derived EVs

restored the proportion of the Ki67+ proliferating and active caspase-

3+ apoptotic cells when EGF lacked from the medium (Figure 2F-H).

F IGURE 1 Fibroblast-derived extracellular vesicles (EVs) restore colonic organoid survival when external Wnt proteins are absent. A,
Representative images in the presence or absence of Wnt3a (100 ng/mL) and human colon fibroblast-derived EVs (scale bars: 20 μm). B,
Quantification of the living colonic organoids. Treatments were started at the time of organoid splitting and organoids were counted on day
4 (n = 3, mean + SD, analysis of variance and Tukey post hoc test, ***P < .005)
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Furthermore, a significant increase in the percentage of dead

organoids was observed when HCF-derived EVs were removed from

the supernatant, and this was restored in the presence of EVs

(Figure 2I), suggesting that EGF activity is largely connected to EVs in

fibroblast supernatants. In addition, HCF-derived EVs showed a dose-

dependent effect on the death of organoids when EGF lacked from

the culture medium (Figure 2J). Importantly, HCF-derived EVs

prevented organoid death when EGF lacked in human colon organoid

cultures, thus, confirming that EGF activity can be transmitted via EVs

in the human ISC niche as well (Figure S3).

To further prove that EGF activity may be transmitted by EVs in the

ISC niche, we carried out immunostaining for phospho-EGF receptor and

observed the rescue effect of EVs in the absence of exogenously added

EGF (Figure S4a). As expected, crypt cells, but not the villi, were positive

F IGURE 2 Fibroblast-derived extracellular vesicles (EVs) transmit epidermal growth factor (EGF) activity in the intestinal stem cell niche. A,
Surviving small intestinal (SI) organoids 4 days after removing noggin or R-Spondin1 and/or adding human colon fibroblast (HCF)-derived EVs
(n = 3). B and C, Representative images (B) from SI organoids when EGF was removed or HCF-derived EVs were added and the quantification at
day 4 (C) (n = 5). D, The proportion of living colonic organoids with the indicated treatments. EVs were pelleted from HCF supernatants (n = 3). E,

Quantification of the living SI organoids at day 4 when EGF was absent or mouse small intestinal fibroblast (MIF)-derived EVs were added (n = 3).
F and G, Representative images (F) and the quantification of Ki67+ proliferating cells (G) from SI organoids in the absence of EGF or the presence
of HCF-derived EVs at day 4 (n = 10-12 from three experiments). H, The percentage of active caspase-3+ apoptotic cells in SI organoids with the
indicated treatments at day 3 (n = 10-12 from three experiments). I, The relative percentage of dead SI organoids when HCF-derived supernatant
was applied after ultracentrifugation (UC). Note that UC removes EVs from the supernatant. EGF or the UC-pelleted EVs with the EV-depleted
UC supernatant were added to some organoids (n = 3). J, Dead organoid rate when HCF-derived EVs were applied at different dilutions (1×, 10×,
100×) in the absence of EGF (n = 3). Kruskal-Wallis test and Dunn post hoc test (G, H) or analysis of variance and Tukey post hoc test (A, C, D, E,
I, J) were used. Scale bars: 50 μm, *P < .05, **P < .01, ***P < .005, n.s., not significant
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for phospho-EGFR immunostaining in mouse intestinal tissue sections

(Figure S4b), thus, confirming the specificity of our staining protocol. In

addition, we used the EGF receptor inhibitor gefitinib as well. Similar to

the exogenously added soluble EGF, the rescue effect of EVs was blocked

in the presence of the inhibitor (Figure S4c).

We next isolated SI organoids from Lgr5-EGFP-IRES-CreERT2 mice,

expressing the green fluorescent protein EGFP in ISCs.1 To expand the

EGFP+ green ISC population in the SI organoids, we applied the GSK3

inhibitor CHIR99021 that activates the Wnt pathway.20 We detected a

massively reduced organoid budding and a decrease in the proportion

of EGFP+ organoids when EGF was removed from culture medium and,

importantly, this effect was rescued by fibroblast-derived EVs

(Figure 3A,B). Interestingly, EGFP+ cells completely disappeared when

EGF lacked; however, we could still detect green cells in SI organoids

when the culture medium was supplemented with HCF-derived EVs

(Figure 3C-D), further proving that EGF activity is preferentially trans-

mitted via EVs in the ISC niche.

3.5 | Fibroblast-derived EVs carry amphiregulin in
the ISC niche

The Vesiclepedia database (http://microvesicles.org/) contains molec-

ular data from isolated EVs. To determine which EGF family members

may be transmitted by EVs, we selected proteomics datasets derived

from cell cultures. As expected, known EV markers (CD9, CD63,

CD81) were represented in a high percentage of the data sets

(Figure S5a). Interestingly, we observed a similarly high representation

of Wnt proteins and the lack of R-Spondins in these lists (Figure S5a).

When focusing on EGF family members, epiregulin (EREG), TGFα, and

amphiregulin (AREG) were present in some cell line-derived EVs.

However, all these hits derived only from cancer cells (Figure S4a).

Thus, analysis of Vesiclepedia data suggested that EGF family mem-

bers, such as epiregulin, TGFα, and amphiregulin may be transmitted

by EVs; however, it did not give any indication for their presence on

EVs of non-cancerous cell origin.

Reverse transcription quantitative PCR showed that both HCFs

and MIFs expressed a wide array of EGF ligands, such as EGF,

betacellulin, amphiregulin, epiregulin, and HBEGF, although the rela-

tive mRNA level of the family members varied between mouse and

human cells (Figure 4A,B). In contrast, the RNA level of these mole-

cules was very low or undetectable in SI organoids (Figure 4B). EVs

isolated by anti-CD63 antibody-coated beads from fibroblast cultures

were positive for amphiregulin (Figure 4C,D), and we detected amphi-

regulin in the HCF-derived EV pellet by Western blotting as well

(Figure 4E), showing that at least this member of the EGF ligand fam-

ily is transported by fibroblast-derived EVs in the ISC niche. Impor-

tantly, the bead-based experiment also confirms that EGF activity of

F IGURE 3 Fibroblast-derived extracellular vesicles (EVs) restore the Lgr5-EGFP+ intestinal stem cell population in the absence of epidermal
growth factor (EGF). A, The percentage of Lgr5-EGFP organoids with more than two budding structures at day 4 after the indicated treatments.
EVs were isolated from human colon fibroblasts (n = 4). B, The proportion of organoids with EGFP+ cells (n = 4). CHIR99021 was applied 3 days
before treatments. C, Representative confocal microscopic images, taken 4 days after removing EGF and/or adding EVs (scale bars: 50 μm). D,
The percentage of EGFP+ cells in the organoids (n = 10-11 from three experiments). Analysis of variance and Tukey post hoc tests (A, B) or
Kruskal-Wallis and Dunn post hoc tests (D) were used. * and *** indicate P < .05 and P < .005, respectively, compared with all other groups.
Mean + SD (A, B) or minimum, Q1, median, Q3, and maximum (D) are shown
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the UC pellet is not just an unspecific co-purification event during EV

isolation. As another experiment, we added amphiregulin to the

medium, and the supernatants and pellets after UC were applied in SI

organoid cultures. Interestingly, this supernatant, but not the pellet,

had a rescue effect on organoid death, showing that exogenously

added amphiregulin does not co-purify with medium components

(Figure 4F).

The used antibodies for EGF family members recognize the extra-

cellular domains of the growth factors (see Materials and Methods in

Supporting Information Appendix), suggesting that EV-bound amphi-

regulin is able to bind to its receptor. Indeed, when neutralizing

amphiregulin in fibroblast-derived EVs before applying them to

organoids in the absence of EGF, we observed a marked reduction in

the proportion of budding organoids, showing the reduced stem cell

activity (Figure 4G). Collectively, fibroblast-derived EVs carry active

amphiregulin as EGF activity in the ISC niche.

3.6 | Fibroblast-derived EVs have no role in
maintaining the stem cell niche when EGF is
dispensible

Apc mutation represents one of the first genetic events in colorectal

tumorigenesis, leading to adenoma formation. Mouse intestinal ade-

noma organoids are independent of ISC factors, including EGF family

members.13,21 To study the role of fibroblast-derived EVs in an EGF-

independent model, we used Apc-mutant SI organoids that had been

created previously by the CRISPR-Cas9 technology and had been

F IGURE 4 Epidermal growth factor (EGF) family members are present on extracellular vesicles (EVs). A, The relative RNA levels of EGF family
members in human colon fibroblasts (HCFs) (n = 3, RT-qPCR). Expression levels normalized to HPRT1 housekeeping were compared with the
relative level of EGF. B, Expression levels of EGF family members in murine small intestinal fibroblast (MIFs) and small intestinal organoids. The
Hprt-normalized Egf RNA in MIFs was taken as 100% (n = 3, RT-qPCR). C and D, The relative percentage of positive anti-CD63-coated beads
after incubating with HCF-derived EVs and detected with antibodies against the indicated EGF family members (C) and selected flow cytometry
dot plot when using anti-ampiregulin (AREG) antibody (D). EVs were pelleted by ultracentrifugation and dissolved in phosphate-buffered saline
(n = 3, ctr: Sample with control primary antibody). E, Simple Western WES analysis of two HCF-derived ultracentrifuged supernatants (EV1, EV2)
for AREG (34 kDa) and the EV markers CD81 (29 kDa) and ALIX (108 kDa). The control sample was prepared from medium. F, The percentage of
budding organoids when medium containing amphiregulin (AREG, 50 ng/mL) or HCF-derived samples (EV) were ultracentrifuged, and the
supernatants (sn) and the pellets (P) were applied (n = 3). Note that AREG was not ultracentrifuged from the medium. G, The proportion of
budding organoids when HCF-derived EVs were pre-incubated with control or neutralizing anti-amphiregulin antibody before applying them to
organoids (n = 5). Analysis of variance and Tukey post hoc tests were used (C, F, G). Mean + SD are shown, **P < .01, ***P < .005
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selected in the absence of the niche factors, including R-Spondin1.15

Interestingly, whereas HCF-derived supernatant had a dramatic effect

on the colony forming efficiency of Apc-mutant cells (Figure S5b), this

increase was not attributed to either EGF or EVs (Figure S5b-c), as

proved by adding supernatant or the pellet after UC. Thus, similarly to

EGF, fibroblast-derived EVs have a critical role in maintaining the nor-

mal ISC stem cell niche, but they are dispensible for mouse intestinal

adenoma cells.

4 | DISCUSSION

We show here that both colonic and small intestinal fibroblast-derived

EVs play a critical role in the transmission of EGF activity in the nor-

mal ISC niche. Importantly, our data prove that at least one EGF mem-

ber, amphiregulin, can travel via EVs from fibroblasts to ISCs.

Furthermore, fibroblast-derived EVs can rescue the lack of Wnt pro-

teins as well. However, when all the essential niche factors were pre-

sent, EVs did not modify the survival of intestinal crypts.

The highly hydrophobic Wnt proteins are critical factors in the

ISC niche. Farin et al have found that ISC membranes constitute a res-

ervoir for Wnt proteins and Wnt3 mainly travels away from its source

in a cell-bound manner through cell division, but how it is transferred

between producing and receiving cells has not been identified.10

Interestingly, a recent study reported that within the epithelium, dying

cells release Wnt-containing apoptotic bodies that regulate stem cell

proliferation.22 Others have proved that Wnt proteins may travel via

EXs, the endosome-derived subpopulation of EVs in the intercellular

space.23 The relevance of this finding has been proved in many

models, such as pulmonary fibrosis or heart diseases.24-26 Wnts may

bind to lipoproteins that stabilize them as well.19,27 Interestingly,

macrophage-derived EVs carry Wnt proteins to ISCs in intestinal

repair,11 and we provide evidence that fibroblast-derived EVs transfer

Wnt activity in the ISC niche in WT organoids as well. Importantly, we

found no rescue effect with EVs when R-Spondin1 lacked from the

culture medium. R-Spondin1 represents a major amplification step in

the Wnt signaling pathway by binding to the ISC marker Lgr5.28

Fibroblast-derived EVs contribute to the regulation of Wnt activity in

the normal ISC niche via transmitting some but not all ligands of this

pathway. Thus, EVs are predicted not to be able to fully and

completely activate the Wnt pathway.

EGF receptor ligand family members are synthesized as

membrane-bound molecules and can then be released after cleavage

by proteases. Interestingly, members of the EGF family, including

amphiregulin, may act in a paracrine, autocrine, and juxtacrine man-

ner.29,30 Our results agree with a previous report, showing that some

EGF family members, such as amphiregulin, are transported by EVs

and that amphiregulin is present as a full-length, membrane-bound

form on EVs.31 Importantly, this study also proved that EV-bound

amphiregulin and HB-EGF are approximately fivefold more efficient

compared with recombinant proteins.31 The presence of the full-

length amphiregulin on different EV subpopulations has been con-

firmed by other reports as well.32-34 However, all these studies used

cancer cell lines and some of them only analyzed the molecular cargo

of EVs. To our knowledge, this is the first report to prove the role of

fibroblast-derived EVs in the transmission of EGF activity, such as

amphiregulin, among non-cancer cells in an organoid system, modeling

the ISC niche. Since neutralizing EV-bound amphiregulin blocked the

effects of fibroblast-derived EVs, this indicates that EGF family mem-

bers, such as amphiregulin, are present on the surface of EVs in the

proper orientation, and we also provide evidence that EVs activate

EGF receptors. Furthermore, our data suggest that although recombi-

nant EGF is effective in intestinal organoid cultures, fibroblast-derived

EGF activity is connected to EVs in the ISC niche, providing a concen-

trated way of transmission. Interestingly, the maintenance of the stem

cell population requires high activity of ISC niche factors, such as

Wnt28; thus, transmission via EVs is a tool to provide the necessary

concentration of these factors.

5 | CONCLUSION

Collectively, our data show that colonic and small intestinal fibroblast-

derived EVs carry EGF family members, such as amphiregulin that act

as niche factors for ISCs; thus, EVs contribute to the maintenance of

the ISC phenotype. Since providing niche factors is important not only

under homeostasis but after intestinal injuries as well, EVs may con-

tribute as a novel tool to develop better regenerating strategies by

transporting niche factors in diseases where the ISC niche is

disturbed.
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